首页> 外文OA文献 >The Development of a New Lightning-Frequency Parameterization and its Implementation in a Weather Prediction Model
【2h】

The Development of a New Lightning-Frequency Parameterization and its Implementation in a Weather Prediction Model

机译:新型雷电频率参数化的研制及其在天气预报模型中的实现

摘要

Based on a straightforward physical model, a new lightning parameterization has been developed:A two-plate capacitor represents the basic dipole charge structure of a thunderstorm, whichis charged by the generator current and discharged by lightning. In this approach, thegenerator current as well as the discharge strength are parameterized using the graupel-mass field.If these two quantitiesare known, and if the charging and discharging are in equilibrium, then the flash rate is uniquelydetermined. This approach remedies shortcomings of earlier theoretical approaches that relate the flashrate e.g., to generator power. No distinction is made between intracloud andcloud-to-ground discharges.In order to test this approach, polarimetric radardata were used, from which the graupel distribution in observed thunderstorms could be inferred. The lightningactivity was detected using the LINET network. The comparison betweentheoretically-predicted and measured flash rates is encouraging: Over a wide range of flash rates,the theoretical approach yields accurate results for isolated thunderstorms. Two existingparameterizations, which only use the depth of the clouds as predictor, producesubstantially less accurate forecasts.These two existing approaches, the one developed in this study, as well as a fourth one based on updraft velocity,were implemented in the convection-resolving COSMO-DE numerical weather prediction model. With this model,real-world convective scenarios were simulated. The output of the lightning scheme includes the location and timeof every simulated discharge.Testing the performance of theparameterizations with modeled convection is difficult as there is no one-to-one correspondence betweenobserved and modeled convective clouds. Where a comparison between modeled and observed flash rates of individual cloudswas possible, the results for individual cells were promising.The comparison of the bulk lightning activity over an area comprising southern Germany and adjacent countriessuggests that none of the four parameterizations captures the overall lightning activity well. This is mainlybecause COSMO-DE does not simulate the observed number of cells at the correct times.
机译:基于简单的物理模型,开发了一种新的闪电参数设置:两板电容器代表雷暴的基本偶极电荷结构,其由发电机电流充电并由雷电放电。在这种方法中,使用graupel-mass场对发电机电流以及放电强度进行参数化。如果知道这两个量,并且如果充电和放电处于平衡状态,则可以唯一确定闪速。该方法弥补了将闪速与例如发电机功率相关联的早期理论方法的缺点。云内放电与云对地放电没有区别。为了测试这种方法,使用了极化雷达数据,由此可以推断出观测到的雷暴中的格鲁珀分布。使用LINET网络检测到闪电活动。从理论上预测的闪光速率与测量的闪光速率之间的比较令人鼓舞:在广泛的闪光速率范围内,理论方法可为孤立的雷暴产生准确的结果。对流分解COSMO中实现了两个仅使用云层深度作为预测因子的现有参数化方法,其产生的准确度基本上不高。这两种现有方法(本研究中开发的一种方法以及基于上升气流速度的第四种方法)均已实现。 -DE数值天气预报模型。使用该模型,模拟了现实世界中的对流情况。闪电方案的输出包括每个模拟放电的位置和时间。由于对流云和观测对流云之间不存在一对一的对应关系,因此很难用模型对流测试参数化的性能。如果可以比较单个云的建模和观测到的闪光速率,则单个细胞的结果是有希望的。在包括德国南部和邻国在内的区域进行的整体闪电活动的比较表明,四个参数均不能很好地捕获整体闪电活动。这主要是因为COSMO-DE无法在正确的时间模拟观察到的细胞数量。

著录项

  • 作者

    Dahl Johannes;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号