首页> 外文OA文献 >Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms: an application to the 1984 M 5.7 Gubbio, central Italy, earthquake.
【2h】

Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms: an application to the 1984 M 5.7 Gubbio, central Italy, earthquake.

机译:使用有限断层合成地震图进行强地面运动预测的不确定性:适用于意大利中部地震的1984 m 5.7 Gubbio。

摘要

This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e. position of nucleation point, value of the rupture velocity and distribution of the final slip on the fault). We applied an approximated simulation technique, the Deterministic-Stochastic Method DSM, and a broadband technique, the Hybrid-Integral-Composite method HIC, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at 5 accelerometric stations. We first optimize the position of nucleation point and the value of rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2.65 km/s from a hypocenter located approximately at the center of the fault. In the second part of the paper we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strong-motion parameters and show that their standard deviations depend on the source-parameterization adopted by the two techniques. Furthermore, we show that, Arias Intensity and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity results better modeled and less affected by uncertainties in the source kinematic parameters than Arias Intensity. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events.
机译:这项研究调查了两种概念上不同的有限故障模拟技术的工程适用性。我们将注意力集中在两个重要方面:首先,量化重现观测到的地面运动参数(峰值和积分量)的方法的能力;其次,在源的大规模运动学定义中(即成核点的位置,破裂速度的值以及最终滑动在断层上的分布)量化强运动参数对变异性的依赖性。我们应用了一种近似的模拟技术,即确定性随机方法DSM和一种宽带技术,即混合积分复合方法HIC,对5个加速度计站点的1984年意大利中部古比奥5.7级地震进行了建模。我们首先通过最小化1到9 Hz频带中的加速度响应谱的误差函数,来优化故障上三个不同最终滑动分布的成核点位置和断裂速度值。我们发现,最好的模型是由距断层中心约2.65 km / s的震源传播的破裂给出的。在本文的第二部分中,我们计算了超过2400种不同的运动源参数场景。在这五个位置,我们计算了各种强运动参数的残差分布,并表明它们的标准偏差取决于两种技术采用的源参数化。此外,我们表明,咏叹调强度和显着持续时间分别以最大和最小标准偏差为特征。与Arias Intensity相比,Housner Intensity结果建模效果更好,并且不受源运动学参数不确定性的影响。运动模型的不确定性以不同方式影响不同地面运动参数的可变性这一事实,在对未来事件进行危害评估和地震工程研究时必须加以考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号