首页> 外文OA文献 >Mineralogy and geochemical trapping of CO2 in an Italian carbonatic deep saline aquifer: preliminary results
【2h】

Mineralogy and geochemical trapping of CO2 in an Italian carbonatic deep saline aquifer: preliminary results

机译:意大利碳酸盐深盐水含水层中二氧化碳的矿物学和地球化学捕集:初步结果

摘要

CO2 Capture & Storage (CCS) is presently one of the most promising technologiesfor reducing anthropogenic emissions of CO2 . Among the several potential geologi-cal CO2 storage sites, e.g. depleted oil and gas field, unexploitable coal beds, salineaquifers, the latter are estimated to have the highest potential capacity (350-1000 GtCO2 ) and, being relatively common worldwide, a higher probability to be locatedclose to major CO2 anthropogenic sources. In these sites CO2 can safely be retainedat depth for long times, as follows: a) physical trapping into geologic structures; b) hy-drodynamic trapping where CO2(aq) slowly migrates in an aquifer, c) solubility trap-ping after the dissolution of CO2(aq) and d) mineral trapping as secondary carbon-ates precipitate. Despite the potential advantages of CO2 geo-sequestration, risks ofCO2 leakage from the reservoir have to be carefully evaluated by both monitoringtechniques and numerical modeling used in “CO2 analogues”, although seepage fromsaline aquifers is unlikely to be occurring. The fate of CO2 once injected into a salineaquifer can be predicted by means of numerical modelling procedures of geochemicalprocesses, these theoretical calculations being one of the few approaches for inves-tigating the short-long-term consequences of CO2 storage. This study is focused onsome Italian deep-seated (>800 m) saline aquifers by assessing solubility and min-eral trapping potentiality as strategic need for some feasibility studies that are aboutto be started in Italy. Preliminary results obtained by numerical simulations of a geo-chemical modeling applied to an off-shore Italian carbonatic saline aquifer potentialsuitable to geological CO2 storage are here presented and discussed. Deep well data,still covered by industrial confidentiality, show that the saline aquifer, includes sixLate Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l.These formations, belonging to Tuscan Nappe, consist of porous limestones (mainlycalcite) and marly limestones sealed, on the top, by an effective and thick cap-rock(around 2500 m) of clay flysch belonging to the Liguride Units. The evaluation of thepotential geochemical impact of CO2 storage and the quantification of water-gas-rockreactions (solubility and mineral trapping) of injection reservoir have been performedby the PRHEEQC (V2.11) Software Package via corrections to the code default ther-modynamic database to obtain a more realistic modelling. The main modifications tothe Software Package are, as follows: i) addition of new solid phases, ii) variationof the CO2 supercritical fugacity and solubility under reservoir conditions, iii) addi-tion of kinetic rate equations of several minerals and iv) calculation of reaction sur-face area. Available site-specific data include only basic physical parameters such astemperature, pressure, and salinity of the formation waters. Rocks sampling of eachconsidered formation in the contiguous in-shore zones was carried out. Mineralogywas determined by X-Ray diffraction analysis and Scanning Electronic Microscopyon thin sections. As chemical composition of the aquifer pore water is unknown, thishas been inferred by batch modeling assuming thermodynamic equilibrium betweenminerals and a NaCl equivalent brine at reservoir conditions (up to 135 ̊C and 251atm). Kinetic modelling was carried out for isothermal conditions (135 ̊C), under aCO2 injection constant pressure of 251 atm, between: a) bulk mineralogy of the sixformations constituting the aquifer, and b) pre-CO2 injection water. The kinetic evolu-tion of the CO2 -rich brines interacting with the host-rock minerals performed over 100years after injection suggests that solubility trapping is prevailing in this early stageof CO2 injection. Further and detailed multidisciplinary studies on rock properties,geochemical and micro seismic monitoring and 3D reservoir simulation are necessaryto better characterize the potential storage site and asses the CO2 storage capacity.
机译:二氧化碳捕集与封存(CCS)是目前减少人为排放二氧化碳的最有前途的技术之一。在几个潜在的地质二氧化碳封存地点中,例如枯竭的油气田,无法开采的煤层,盐水层,据估计后者具有最高的潜在产能(350-1000 GtCO2),并且在世界范围内相对较普遍,更可能靠近主要的人为二氧化碳源。在这些地点,二氧化碳可以安全地长期保留在深处,具体如下:a)物理圈闭到地质结构中; b)水动力捕集,其中CO2(aq)在含水层中缓慢迁移,c)CO2(aq)溶解后的溶解度捕集,以及d)二次碳酸盐沉淀时的矿物捕集。尽管CO2固存具有潜在的优势,但是储油层CO2泄漏的风险必须通过监测技术和“ CO2类似物”中使用的数值模型进行仔细评估,尽管不太可能发生盐水层的渗漏。一旦注入盐水层,就可以通过地球化学过程的数值模拟程序来预测二氧化碳的命运,这些理论计算是研究二氧化碳储存的短期长期后果的少数方法之一。这项研究的重点是通过评估溶解度和矿物捕集潜力,以此作为意大利一些深层(> 800 m)盐水层的战略需求,这是一些即将在意大利开始的可行性研究的战略需要。本文介绍并讨论了通过地球化学模型的数值模拟获得的初步结果,该模型应用于适用于地质二氧化碳存储的意大利海上碳酸盐岩含水层潜力。深井数据仍然被工业保密,表明盐水层包括在2500-3700 m bsl深度的六个三叠纪-早侏罗世碳酸盐岩地层,这些地层属于托斯卡纳纳普,由多孔石灰石(主要为方解石)和泥灰岩组成。石灰石在顶部被有效的且厚实的盖层岩层(约2500 m)密封,属于Liguride单位。 PRHEEQC(V2.11)软件包通过对默认的热力学数据库进行了更正,从而对CO2储存的潜在地球化学影响进行了评估,并对注入储层的水-气-岩石反应(溶解性和矿物捕集)进行了量化。获得更现实的建模。对软件包的主要修改如下:i)添加新的固相,ii)在储层条件下改变CO2超临界逸度和溶解度,iii)添加几种矿物的动力学速率方程式和iv)计算反应表面积。可用的特定地点数据仅包括基本物理参数,例如地层水的温度,压力和盐度。在连续的近海区域对每个考虑的岩层进行了岩石采样。矿物学通过X射线衍射分析和薄壁扫描电子显微镜确定。由于含水层孔隙水的化学成分是未知的,因此通过分批建模可以推断出这一点,假设在储层条件下(最高135°C和251atm)矿物与NaCl等效盐水之间存在热力学平衡。在等温条件(135°C)下,在251个大气压的aCO2注入恒定压力下进行动力学建模,其中:a)构成含水层的六种地层的整体矿物学; b)注入CO2之前的水。注入后100年内,富含CO2的盐水与基质岩石矿物相互作用的动力学演化表明,在注入CO2的这一早期阶段,溶解性捕集是普遍存在的。对岩石特性,地球化学和微地震监测以及3D储层模拟进行深入,详细的多学科研究对于更好地表征潜在的封存点和评估CO2的封存能力是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号