首页> 外文OA文献 >Investigation of the complex dynamics and structure of the 2010 Eyjafjallajökull volcanic ash cloud using multispectral images and numerical simulations
【2h】

Investigation of the complex dynamics and structure of the 2010 Eyjafjallajökull volcanic ash cloud using multispectral images and numerical simulations

机译:利用多光谱图像和数值模拟研究2010年Eyjafjallajökull火山灰云的复杂动力学和结构

摘要

We investigated the structure and evolution of the 2010 Eyjafjallajökull volcanic cloudand its dispersal over Iceland and Europe integrating satellite multispectral images and numerical simulations. Data acquired by Medium Resolution Imaging Spectrometer (MERIS)and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) have been analyzed to quantify the cloud extent and composition. The VOL-CALPUFF dispersal codewas applied to reconstruct the transient and 3-D evolution of the cloud. Source parameters estimated on the base of available a posteriori volcanological data sets have been used. Quantitative comparisons between satellite retrievals and modeling results were performed for two selected instants of time during the first and third eruptive phases on a regional scale. Sensitivity of the model to initial volcanological conditions has been analyzed at continental scale. Several complex non intuitive features of cloud dynamics have been highlighted andstrengths and limitations of the adopted methods identified. The main findings are: the level ofquantitative agreement between satellite observations and numerical results depends on ashcloud composition (particle sizes and concentration) with better agreement for smallerparticles and higher concentrations; the agreement between observations and modelingoutcomes also depends on the temporal stability of volcanological conditions and thecomplexity of the meteorological wind field; the irregular dispersion of ash, as reconstructedfrom satellite data and numerical modeling, can be well explained by the different response ofparticle sizes to strong vertical wind-shear, and by resuspension processes acting at ground level; eruptive source conditions are the main source of uncertainty in modeling, especially during an ongoing crisis and at long-range scales.
机译:我们结合卫星多光谱图像和数值模拟,研究了2010Eyjafjallajökull火山云的结构和演化及其在冰岛和欧洲的扩散。对中分辨率成像光谱仪(MERIS)和高级星载热发射和反射辐射仪(ASTER)采集的数据进行了分析,以量化云的范围和成分。 VOL-CALPUFF扩散码被用于重建云的瞬态和3D演化。已经使用了基于可用后验火山学数据集估算的源参数。在区域规模的第一个和第三个喷发阶段的两个选定的时间点,对卫星取回和模拟结果进行了定量比较。该模型对初始火山条件的敏感性已在大陆范围内进行了分析。云动力学的一些复杂的非直观特征已被突出显示,并指​​出了所采用方法的优势和局限性。主要发现是:卫星观测与数值结果之间的定量吻合程度取决于灰云成分(颗粒大小和浓度),对于较小的颗粒和较高的浓度,一致性更好;观测结果与模拟结果之间的一致性还取决于火山条件的时间稳定性和气象风场的复杂性;根据卫星数据和数值模拟重建的灰分的不规则分散,可以很好地解释,这是由于颗粒大小对强烈的垂直风切变的不同响应,以及在地面作用的悬浮过程所致;爆发源条件是建模不确定性的主要来源,尤其是在持续不断的危机和长期范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号