首页> 外文OA文献 >Fracture-Based Fabrication of a Size-Controllable Micro/Nanofluidic Platform for Mapping of DNA/Chromatin.
【2h】

Fracture-Based Fabrication of a Size-Controllable Micro/Nanofluidic Platform for Mapping of DNA/Chromatin.

机译:基于断裂的尺寸可控微/纳流控平台制作DNa /染色质定位。

摘要

In the years since the launch of The Human Genome Project (HGP), which significantly increased our understanding of biological inheritance by revealing the structure and function of genetic material, tangential research efforts have revealed mechanisms of inheritance that extend beyond the sequence of nucleic acids within an individual’s genome. The study of these mechanisms, referred to as epigenetics, now lies at the frontier of biomedical research. While much is known regarding genetic inheritance, the complexity of chromosome structure and lack of appropriate methodologies have long hindered mechanistic dissection of epigenetic inheritance. The work in this dissertation seeks three fundamental objectives: (1) the development of appropriate tools for chromatin mapping, (2) the identification of a well-defined model system, and (3) the use of ‘super-resolution imaging’. First, a unique micro/nanofluidics platform was developed utilizing fracture-based fabrication techniques. The use of such techniques, combined with the careful selection of appropriate materials, enabled the formation of channels with dimensions that could be modified by simply modifying the magnitude of the uniaxial strain applied. By integrating stress focusing notch micro-features into the soft elastomer, polydimethylsiloxane (PDMS), nano-scale fractures were generated at desired positions, producing an array of nano-channels.These adjustable channels were then utilized to achieve the efficient pre-concentration, capturing, and linearization of DNA and chromatin via nano-confinement and a squeezing flow. In the tuneable channel device, DNA molecules were pre-concentrated up to 10,000 fold at the defined position using electrophoresis, and were successfully trapped and linearized up to its contour length for epigenetic marker profiling.Finally, Tetrahymena was selected as an optimal biological system, and was used to elucidate the spatial distribution of histones along replicated DNA, as well as to characterize specific histone-DNA interactions occurring during replication by the super-resolution microscopy. This multi-disciplinary dissertation project provides insight into both the unknown epigenetic changes occurring during DNA replication, and the biological machinery underlying fundamental DNA-histone interactions. The application of this adjustable fluidics platform to other biological model species may provide a means to establish other epigenetic marker maps including patterns of post-translational modifications of histone and DNA methylation to study yet unknown epigenetic mechanisms.
机译:自人类基因组计划(HGP)启动以来,通过揭示遗传物质的结构和功能极大地增进了我们对生物遗传的理解,多年来,切线研究工作已经揭示了遗传机制,其延伸范围超出了人类体内的核酸序列一个人的基因组。这些机制的研究被称为表观遗传学,目前处于生物医学研究的前沿。尽管关于遗传遗传的知识很多,但染色体结构的复杂性和缺乏适当的方法学一直阻碍表观遗传遗传的机械解剖。本论文的工作寻求三个基本目标:(1)开发合适的染色质作图工具;(2)识别定义明确的模型系统;(3)使用“超分辨率成像”。首先,利用基于断裂的制造技术开发了独特的微/纳米流体平台。这种技术的使用,加上对适当材料的仔细选择,使得能够形成尺寸可以通过简单地改变所施加的单轴应变的大小而改变的通道。通过将应力聚焦缺口的微观特征集成到软弹性体聚二甲基硅氧烷(PDMS)中,在所需位置产生了纳米级断裂,产生了纳米通道阵列,然后利用这些可调节通道实现有效的预浓缩,通过纳米限制和挤压流捕获和线性化DNA和染色质。在可调通道设备中,使用电泳将DNA分子在定义的位置预浓缩至10,000倍,并成功捕获并线性化至其轮廓长度以进行表观遗传标记分析。最后,选择四膜虫作为最佳生物系统,并用于阐明组蛋白沿复制的DNA的空间分布,并通过超分辨率显微镜表征复制过程中发生的特定组蛋白-DNA相互作用。这个多学科的论文项目提供了对DNA复制过程中发生的未知表观遗传学变化以及基本的DNA-组蛋白相互作用基础的生物机制的洞察力。该可调射流平台在其他生物学模型物种上的应用可能提供一种建立其他表观遗传标记图的手段,包括组蛋白和DNA甲基化的翻译后修饰模式,以研究未知的表观遗传机制。

著录项

  • 作者

    Kim Byoung Choul;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号