首页> 外文OA文献 >Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit
【2h】

Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit

机译:环境压力对过热极限爆炸液体不稳定性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document.ududThe effect of ambient pressure on the dynamical behaviour of a single droplet (1-2 mm diameter) of volatile liquid boiling explosively at the limit of superheat is studied experimentally and theoretically. In a series of experiments it is shown that the evaporative instability, observed earlier by Shepherd & Sturtevant (1982) during the rapid vapourization of butane droplets at atmospheric pressure, is suppressed at high pressure. Three other fluids (pentane, isopentane, and ether) are tested to establish the generality of the instability and other transient processes previously observed. Direct evidence is obtained showing that during violently unstable boiling small liquid particles are torn from the liquid-vapour interface. This ejection of fine droplets from the evaporating surface produces a mass flux orders of magnitude greater than that characteristic of ordinary boiling.ududRaising the ambient pressure lowers the superheat attained at the superheat limit, which decreases the vapourization rate. At high pressure boiling consists of normal slow vapourization from a smooth interface. Observed bubble growth rates show reasonable agreement with theory. At intermediate pressures a transitional regime of stability occurs in which a drop initially vapourizes stably for several milliseconds while incipient instability waves develop on the evaporating interface. When only a small amount of liquid remains in the drop in the shape of a thin cap, heat transfer from the surrounding hot host fluid initiates violent boiling at the edge of the liquid cap. The subsequent rapid vapourization generates a radiated pressure field two orders of magnitude larger than during stable boiling, and sets the bubble into violent oscillation. The bubble is subject to the Rayleigh-Taylor instability and rapidly disintegrates into a cloud of small bubbles.ududLowering the ambient pressure decreases the time delay between nucleation and onset of unstable boiling. For example, in ether at atmospheric pressure the instability is triggered less than 8 [...]sec after nucleation, shortly after the smooth vapour bubble contacts the droplet surface. Heterogeneous nucleation spreads out along the surface of the drop while disturbances (with a length scale of 100 [...]m) distort the unstably evaporating interface within the drop, substantially enhancing the vapourization rate. At early times, droplets torn from the evaporating surface evaporate before the instability-driven jet impinges upon the surrounding fluid, bulging the bubble surface. The last portion of liquid in a drop boils particularly violently and droplets ejected from the evaporating interface at this time remain intact to splatter the bubble surface. At subatmospheric pressures the most rapid vapourization occurs and temperature gradients within a drop produce spatial variations in vapourization rate.ududThe Landau mechanism for the instability of laminar flames is adapted to the case of evaporation to investigate the effects of variable ambient pressure. A spherical version of the theory, applicable before the vapour bubble contacts the droplet surface, predicts absolute stability at atmospheric pressure. At later times the spherical constraint is inappropriate and planar theory yields results in general agreement with observation. Differences in fluid properties make some fluids more prone to instability than others. The product of the maximum growth rate with the time interval the interface is predicted to be linearly unstable measures the susceptibility to instability. For practical estimates it is suggested that a value of 3 of this parameter be taken as the lower limit for instability. The sensitivity of the instability to temperature suggests that small temperature nonuniformities may be responsible for quantitative departures of the behaviour from predictions.ud
机译:注意:用[...]表示无法用纯ASCII呈现的文本或符号。 .pdf文件中包括摘要。 ud ud通过实验和理论研究了环境压力对在爆炸极限下爆炸性沸腾的易挥发液体的单个液滴(直径为1-2 mm)的动力学行为的影响。在一系列实验中表明,Shepherd&Sturtevant(1982)早先在大气压下丁烷液滴的快速汽化过程中观察到的蒸发不稳定性在高压下得到了抑制。测试了其他三种流体(戊烷,异戊烷和乙醚)以建立不稳定性和先前观察到的其他瞬态过程的一般性。获得的直接证据表明,在剧烈不稳定的沸腾过程中,小液体颗粒从液-气界面破裂。从蒸发表面喷射出的细小液滴产生的质量通量要比普通沸腾的特征通量大几个数量级。提高环境压力会降低达到过热极限的过热,从而降低汽化率。在高压下,沸腾包括来自光滑界面的正常缓慢汽化。观察到的泡沫增长率与理论相吻合。在中间压力下,会出现过渡的稳定状态,其中,液滴的初始蒸发稳定稳定了几毫秒,而在蒸发界面上出现了初期的不稳定波。当只有少量液体以薄盖的形式保留在液滴中时,周围热主体流体的传热会在液盖的边缘引发剧烈沸腾。随后的快速蒸发产生的辐射压力场比稳定沸腾时大两个数量级,并使气泡剧烈振荡。气泡易受瑞利-泰勒(Rayleigh-Taylor)失稳的影响,并迅速崩解成一团小气泡。 ud ud降低环境压力可减少成核与不稳定沸腾开始之间的时间延迟。例如,在大气压的乙醚中,成核后不到8秒,即在光滑的蒸汽泡接触液滴表面后不久,就引发了不稳定性。异种形核沿着液滴表面扩散,而干扰(长度尺度为100 m)使液滴内不稳定的蒸发界面变形,从而大大提高了汽化速率。在早期,从蒸发表面撕裂的液滴在不稳定驱动的喷射流撞击周围的流体之前膨胀,从而使气泡表面鼓胀。液滴中的最后一部分液体会剧烈沸腾,这时从蒸发界面喷出的液滴保持完整,以飞溅气泡表面。在低于大气压的情况下,最快速的汽化发生,并且液滴内的温度梯度会产生汽化速率的空间变化。 ud ud针对层流火焰不稳定性的Landau机制适用于蒸发情况,以研究可变环境压力的影响。该理论的球形形式适用于蒸气气泡接触液滴表面之前,可预测大气压下的绝对稳定性。在以后的时间,球形约束是不合适的,平面理论得出的结果与观察结果基本一致。流体特性的差异使某些流体比其他流体更容易不稳定。最大增长率与界面被认为是线性不稳定的时间间隔的乘积可衡量对不稳定性的敏感性。对于实际估计,建议将此参数的值3作为不稳定性的下限。不稳定性对温度的敏感性表明,较小的温度不均匀性可能是行为与预测之间定量偏离的原因。 ud

著录项

  • 作者

    Frost David Lawrence;

  • 作者单位
  • 年度 1985
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号