首页> 外文OA文献 >Photoisomerization Ability of Molecular Switches Adsorbed on Au(111): Comparison between Azobenzene and Stilbene Derivatives
【2h】

Photoisomerization Ability of Molecular Switches Adsorbed on Au(111): Comparison between Azobenzene and Stilbene Derivatives

机译:au(111)上吸附分子开关的光致异构化能力:偶氮苯与二苯乙烯衍生物的比较

摘要

High resolution electron energy loss spectroscopy and two-photon photoemission was employed to derive the adsorption geometry, electronic structure, and the photoisomerization ability of the molecular switch tetra-tert-butyl-stilbene (TBS) on Au(111). The results are compared with the azobenzene analogue, tetra-tert-butyl-azobenzene (TBA), adsorbed on Au(111). TBS was found to adsorb on Au(111) in a planar (trans) configuration similar to TBA. The energetic positions of several TBS-induced electronic states were determined, and in comparison to TBA, the higher occupied molecular states (e.g., the highest occupied molecular orbital, HOMO) are located at similar energetic positions. While surface-bound TBA can be switched with light between its trans and cis configurations, in TBS this switching ability is lost. In TBA on Au(111), the trans → cis isomerization is driven by a substrate-mediated charge transfer process, whereby photogenerated hot holes in the Au d band lead to transient positive ion formation (transfer of the holes to the TBA HOMO level). Even though the energetic positions of the HOMOs in TBA and TBS are almost identical and thus a charge transfer should be feasible, this reaction pathway is obviously not efficient to induce the trans → cis isomerization in TBS on Au(111). Quantum chemical calculations of the potential energy surfaces for the free molecules support this conclusion. They show that cation formation facilitates the isomerization for TBA much more pronounced than for TBS due to the larger gradients at the Franck−Condon point and the much smaller barriers on the potential energy surface in the case of the TBA.
机译:利用高分辨率电子能量损失光谱和双光子光发射,推导了分子开关四叔丁基-sti(TBS)在Au(111)上的吸附几何结构,电子结构和光异构化能力。将该结果与吸附在Au(111)上的偶氮苯类似物四叔丁基偶氮苯(TBA)进行了比较。发现TBS以类似于TBA的平面(反式)构型吸附在Au(111)上。确定了几种TBS诱导的电子态的高能位置,并且与TBA相比,较高的占据分子态(例如,最高占据分子轨道HOMO)位于相似的高能位置。尽管可以通过光在其反式和顺式配置之间切换表面绑定的TBA,但在TBS中,这种切换能力会丢失。在Au(111)上的TBA中,反式→顺式异构化是由底物介导的电荷转移过程驱动的,从而Au d波段中光生热空穴导致瞬态正离子形成(空穴转移到TBA HOMO能级) 。尽管HOMOs在TBA和TBS中的能量位置几乎相同,因此电荷转移应该是可行的,但是该反应途径显然不能有效诱导Au(111)上TBS中的反式→顺式异构化。自由分子的势能面的量子化学计算支持了这一结论。他们表明,由于在Franck-Condon点处的梯度较大,而在TBA的情况下,势能表面上的势垒小得多,因此阳离子的形成比TBS的促进TBA的异构化更为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号