首页> 外文OA文献 >Noncovalent Chalcogen Bonds and Disulfide Conformational Change in the Cystamine-Based Hybrid Perovskite H3N(CH2)2SS(CH2)2NH3PbIII4
【2h】

Noncovalent Chalcogen Bonds and Disulfide Conformational Change in the Cystamine-Based Hybrid Perovskite H3N(CH2)2SS(CH2)2NH3PbIII4

机译:基于胱氨酸的杂化钙钛矿H3N(CH2)2ss(CH2)2NH3 pbIII4的非共价硫属键和二硫键构象变化

摘要

The cystamine-based hybrid perovskite, α-[NH3(CH2)2S–S(CH2)2NH3]PbI4 (1a), can be transformed into its polymorph, β-[NH3(CH2)2S–S(CH2)2NH3]PbI4 (1b), by heat activation (T = 150 °C). The crystal structures have been characterised by single-crystal X-ray diffraction, whereas the phase transition was followed by both solid-state 1H,13C cross-polarisation magic-angle spinning (CPMAS) NMR spectroscopy and thermodiffractometry techniques. At 150 °C, compound 1a is transformed into 1b, and, remarkably, the β phase (1b) can be nearly retained down to room temperature, which means that both polymorphs 1a and 1b can coexist over a large temperature range. The structure of 1b has been solved, and it was found that cystamine molecules are disordered over two positions: the two related components with opposite helical conformations. Solid-state 1H,13C CPMAS NMR spectroscopic measurements show a significant broadening of the NMR spectroscopic line associated with two disordered carbon atoms when cooling 1b from 160 to 50 °C, thereby revealing the presence of exchange between these related atoms, and this favours a molecular dynamical disorder. Disulfide bridges of cystamine molecules are engaged in weak interactions with neighbours, either another cystamine molecule in 1a (SS···SS interactions), or iodine atoms in 1b (SS···I interactions). To evaluate the donating and accepting abilities of the disulfide bridge, and their impact on such weak interactions, a detailed partition of the interaction energy of ten dimer models has been calculated and revealed that the main contribution to the intermolecular bonding comes from the dispersion forces.
机译:基于胱胺的杂化钙钛矿,α-[NH3(CH2)2S–S(CH2)2NH3] PbI4(1a),可以转化为多晶型物,β-[NH3(CH2)2S–S(CH2)2NH3] PbI4 (1b),通过热活化(T = 150°C)。晶体结构已通过单晶X射线衍射表征,而固态1H,13C交叉极化幻角旋转(CPMAS)NMR光谱学和热衍射技术都跟踪了相变。在150°C下,化合物1a转变为1b,值得注意的是,β相(1b)几乎可以保留到室温,这意味着多晶型物1a和1b可以在较大的温度范围内共存。 1b的结构已解决,发现胱胺分子在两个位置无序:两个相对的螺旋构象相关成分。固态1H,13C CPMAS NMR光谱测量结果表明,将1b从160冷却至50°C时,与两个无序碳原子相关的NMR光谱线显着加宽,从而揭示了这些相关原子之间存在交换,这有利于分子动力学障碍。半胱胺分子的二硫键与邻居之间的相互作用较弱,要么是1a中的另一个胱胺分子(SS··SS相互作用),要么是1b中的碘原子(SS··I相互作用)。为了评估二硫键的捐赠和接受能力,以及它们对这种弱相互作用的影响,已对十个二聚体模型的相互作用能进行了详细的划分,并显示出对分子间键合的主要贡献来自分散力。

著录项

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号