首页> 外文OA文献 >Artificial neural network modeling of phenol adsorption onto barley husks activated carbon in an airlift reactor
【2h】

Artificial neural network modeling of phenol adsorption onto barley husks activated carbon in an airlift reactor

机译:人工神经网络模拟空运反应器中大麦壳活性炭吸附苯酚

摘要

Purpose and method of the study: The production of activated carbon fromudbarley husks (BH) by chemical activation with zinc chloride was optimized by using a 23udfactorial design with replicates at the central point, followed by a central compositeuddesign with two responses (the yield and iodine number) and three factors (theudactivation temperature, activation time, and impregnation ratio). Both responses wereudsimultaneously optimized by using the desirability functions approach to determine theudoptimal conditions of this process. The experimental data from the batch phenoludadsorption onto barley husks activated carbon (BHAC) was represented by adsorptionudisotherms (Langmuir and Freundlich) and kinetic models (pseudo-first and pseudosecondudorder, and intraparticle diffusion models), besides the regeneration of phenolloadedudBHAC with different solvents was evaluated. Experimental data confirmed thatudthe breakthrough curves were dependent on BHAC dosage, phenol initialudconcentration, air flow rate, and influent flow rate. Adaline and feed-forward backpropagationudArtificial Neural Networks (ANNs) were developed to predict theudbreakthrough curves for the adsorption of phenol onto barley husks activated carbonud(BHAC) in an airlift reactor. Feed-forward back-propagation networks were tested withuddifferent quantity of neurons at the hidden layer to determine the optimal number ofudneurons in the ANN architecture to represent the breakthrough curves performed atuddifferent operational conditions for the airlift reactor.udContributions and conclusions: After the simultaneous dual optimization ofudBHAC production, the maximal response values were obtained at an activationudtemperature of 436 °C, an activation time of 20 min, and an impregnation ratio of 1.1 gudZnCl2 g BH-1ud, although the results after the single optimization of each response wereudquite different. At these conditions, the predicted values for the iodine number and yieldudwere 829.58 ± 78.30 mg g-1 and 46.82 ± 2.64%, respectively, whereas experimentaludtests produced values of 901.86 mg g-1 and 48.48%, respectively. Moreover, activatedudcarbons from BH obtained at the optimal conditions mainly developed a porousudvstructure (mesopores > 71% and micropores > 28%), achieving a high surface areaud(811.44 m2 g-1ud) that is similar to commercial activated carbons and lignocellulosic-basedudactivated carbons. These results imply that the pore width and surface area are largeudenough to allow the diffusion and adsorption of pollutants inside the adsorbent particles.udFreundlich isotherm model satisfactorily predicted the equilibrium data at 25 andud35 °C, whereas the Langmuir isotherm model well represented the equilibrium data atud45 °C. The maximum phenol adsorption capacity onto BHAC was 98.83 mg g-1 at 25 °Cudand pH 7, similar to phenol adsorption onto commercial activated carbons. The kineticuddata were adequately predicted by both the pseudo-first order and intraparticle diffusionudmodels. The external mass transfer was minimized at stirring speeds greater than 400udmin-1ud, and the adsorption kinetics are affected by both initial phenol concentration andudtemperature. Adsorption equilibrium was reached within 40 and 200 min at initial phenoludconcentration of 1000 mg L-1 at 35 °C and 30 °C, respectively. Ethanol/water solutionsudat 10% V/V were the most effective regenerating agent, with desorption capacity ofud47.79 mg g-1 after five adsorption-desorption cycles.udThe breakthrough curves of phenol adsorption onto BHAC in an airlift reactor inudcontinuous operation were adequately predicted with feed-forward back-propagationudANN architecture with 2 neurons in the hidden layer for the single-input single-outputudproblem. Correlation coefficients higher than 0.95 were observed between theudbreakthrough curves predicted by the developed Adaline network and those obtainedudexperimentally for the multiple-input single-output problem. Further improvements andudgeneralization of the developed predictive Adaline network are discussed.
机译:研究的目的和方法:通过使用23 无工厂设计并在中心点重复,优化了用氯化锌化学活化从大麦果壳(BH)制备活性炭的方法,然后进行了中心复合 uddesign,其中有两个反应(产率和碘值)和三个因素(失活温度,活化时间和浸渍率)。通过使用期望函数方法确定该过程的最佳条件,两个响应都被同时优化。大麦壳活性炭(BHAC)上的分批苯酚/多不饱和吸附的实验数据除吸附剂的再生外,还用吸附等温线(Langmuir和Freundlich)和动力学模型(伪第一和伪第二二阶,以及颗粒内扩散模型)表示。评价了用不同溶剂负载的苯酚 udBHAC。实验数据证实,突破曲线取决于BHAC剂量,苯酚初始浓度,浓度,空气流速和进水流速。开发了Adaline和前馈反向传播人工神经网络(ANNs)来预测空运反应器中苯酚在大麦壳活性炭(BHAC)上的吸附作用的突破曲线。前馈反向传播网络在隐藏层上用不同数量的神经元进行测试,以确定ANN体系结构中最优数量的中子神经元,以表示在空运反应堆的不同操作条件下执行的突破曲线。结论:在同时双优化 udBHAC产量之后,在436°C活化温度,20分钟活化时间和1.1 g udZnCl2 g BH-1 ud浸渍率下获得了最大响应值。 ,尽管每个响应经过单一优化后的结果不尽相同。在这些条件下,碘值和产量的预测值分别为829.58±78.30 mg g-1和46.82±2.64%,而实验测试值分别为901.86 mg g-1和48.48%。此外,在最佳条件下获得的BH活化 udcarbons主要形成了多孔 udv结构(中孔> 71%,微孔> 28%),获得了高表面积 ud(811.44 m2 g-1 ​​ ud),与商业活性炭和木质纤维素基未活化炭。这些结果表明,孔的宽度和表面积都很大,足以使污染物在吸附剂颗粒内扩散和吸附。 udFreundlich等温线模型令人满意地预测了在25和 ud35°C下的平衡数据,而Langmuir等温线模型很好表示 ud45°C下的平衡数据。在25°C udud和pH 7下,苯酚在BHAC上的最大吸附容量为98.83 mg g-1,这与苯酚在商用活性炭上的吸附相似。动力学 uddata可通过拟一阶和颗粒内扩散 udmodel进行充分预测。在大于400 udmin-1 ud的搅拌速度下,外部传质被最小化,并且吸附动力学受初始苯酚浓度和ud温度的影响。在35°C和30°C时,分别在1000 mg L-1的初始苯酚/过高浓度下,分别在40和200分钟内达到吸附平衡。乙醇/水溶液最高达10%V / V是最有效的再生剂,经过五个吸附-解吸循环后的解吸容量为 ud47.79 mg g-1。 ud空运反应器中苯酚在BHAC上的吸附突破曲线使用前馈反向传播 udANN体系结构在单输入单输出 ud问题的隐藏层中具有2个神经元,可以充分预测连续操作。在发达的Adaline网络预测的突破曲线与通过多输入单输出问题通过实验获得的突破曲线之间观察到高于0.95的相关系数。讨论了已开发的预测性Adaline网络的进一步改进和预算化。

著录项

  • 作者

    Loredo Cancino Margarita;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 es
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号