首页> 外文OA文献 >The Construction and Deconstruction of Signaling Systems that Regulate Mitotic Spindle Positioning
【2h】

The Construction and Deconstruction of Signaling Systems that Regulate Mitotic Spindle Positioning

机译:调节有丝分裂纺锤体定位的信号系统的构建和解构

摘要

Signaling systems regulate the flow of cellular information by organizing proteins in space and time to coordinate a variety of cellular activities that are critical for the proper development, function, and maintenance of cells. Signaling molecules can exhibit several levels of complexity through the utilization of modular protein interactions, which can generate simple linear behaviors or complex behaviors such as ultrasensitivity. Protein modularity also serves as the basis for the vast protein networks that form the regulatory networks that govern several biological activities. My work focuses on the importance of protein modularity in complex biological systems, in particular the regulatory pathways of spindle positioning. The first part of my work involves the construction of a synthetic regulatory network using modular protein interactions in an effort to understand the complex behavior of the natural spindle orientation regulator Pins. Utilizing well-characterized protein domains and their binding partners, I built an autoinhibited protein switch that can be activated by a small protein domain. We found that the input-output relationship of the synthetic protein switch could be tuned by the simple addition of "decoy" domains, domains that bind and sequester input signal, thereby impeding the onset of the output response to generate an input threshold. By varying the number and affinities of the decoy domains, we found that we could transform a simple linear response into a complex, ultrasensitive one. Thus, modular protein interactions can serve as a source of complex behaviors.The second part of my work focuses on elucidating the molecular mechanisms underlying spindle positioning in the Drosophila neuroblast. I found that Pins orients the mitotic spindle by coordinating two opposite-polarity microtubule motors Dynein and Kinesin-73 through its multiple domains. Kinesin-73 also relies on its modular domain architecture to perform its duties in Pins-mediated spindle positioning, where its N-terminal half functions in coordinating cortical-microtubule capture while its C-terminal half functions as a region necessary for the activation of Dynein. Thus, modular protein design allows for the organization of spindle orientation regulators in space to achieve the complex biological activity that is spindle positioning. This dissertation includes previously published and unpublished coauthored material.
机译:信号系统通过在空间和时间上组织蛋白质来协调各种对细胞正常发育,功能和维持至关重要的细胞活动,从而调节细胞信息流。通过利用模块化蛋白质相互作用,信号分子可以表现出几个复杂程度,可以产生简单的线性行为或复杂的行为,例如超敏性。蛋白质模块性还充当了庞大蛋白质网络的基础,这些蛋白质网络形成了控制多种生物活动的调控网络。我的工作重点是蛋白质模块在复杂生物系统中的重要性,尤其是纺锤体定位的调控途径。我的工作的第一部分涉及使用模块化蛋白质相互作用构建合成的调控网络,以了解天然纺锤定向调控器Pins的复杂行为。利用功能强大的蛋白质结构域及其结合伙伴,我构建了一种自动抑制的蛋白质开关,该开关可被一个小的蛋白质结构域激活。我们发现合成蛋白质开关的输入-输出关系可以通过简单地添加“诱饵”域,结合并隔离输入信号的域来调节,从而阻碍了输出响应的产生以生成输入阈值。通过改变诱饵域的数量和亲和力,我们发现可以将简单的线性响应转换为复杂的超灵敏响应。因此,模块化的蛋白质相互作用可以作为复杂行为的来源。我的工作的第二部分着重于阐明果蝇神经母细胞中纺锤体定位的分子机制。我发现,Pins通过协调两个相反极性的微管马达Dynein和Kinesin-73的多个域来定向有丝分裂纺锤体。 Kinesin-73还依靠其模块化结构域结构在Pins介导的纺锤体定位中执行其职责,其中N端的一半用于协调皮层微管的捕获,而C端的一半作为激活Dynein所必需的区域。因此,模块化蛋白质设计允许在空间中组织纺锤体定向调节器,以实现纺锤体定位这一复杂的生物活动。本文包括以前发表和未发表的合著材料。

著录项

  • 作者

    Lu Michelle;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号