首页> 外文OA文献 >Breccia-hosted chemical and mineralogical zonation patterns of the northeast zone, Mt. Polley Cu-Ag-Au alkalic porphyry deposit, British Columbia, Canada
【2h】

Breccia-hosted chemical and mineralogical zonation patterns of the northeast zone, Mt. Polley Cu-Ag-Au alkalic porphyry deposit, British Columbia, Canada

机译:东北地区(山)的角砾岩化学和矿物学带状分布。加拿大不列颠哥伦比亚省的Polley Cu-Ag-Au碱性斑岩矿床

摘要

The Mt. Polley alkalic Cu-Ag-Au porphyry was emplaced in the late Triassic to early Jurassic Quesnellia island-arc terrane of the Canadian Cordillera. In the Central Quesnel Belt, Middle Triassic fine-grained oceanic sediments ± limestone were overlain by a thick pile of Late Triassic submarine, alkalic basaltic to andesitic volcanics (Nicola Group), with related subvolcanic intrusions and minor limestones of Late Triassic age. The Mt. Polley Complex is a 6.0 km long by 3.5 km wide, north-northwest-trending, composite alkalic intrusive (and breccia) complex; one of several that are scattered along the length of this terrane, making British Columbia the type location for Au-enriched alkalic porphyry deposits. The Mt. Polley Complex contains silica-undersaturated to silica-saturated pyroxenites, diorites and syenites, but is dominated by monzonites, monzodiorites, and associated breccia bodies, all of which were emplaced during the final stages of arc magmatism, between 209.4 Ma and 195.4 Ma. Mineralization occurred between 209 and 204 Ma. A new model Pb age of 207.8 ± 1.8 Ma for a galena vein is consistent with these ages.udThe NEZ is an alkalic Cu-Ag-Au porphyry deposit hosted by the Mt. Polley Complex. Ore is distinctly higher grade than in other ore zones at Mt. Polley, with average Cu grades at 0.8–1.0 percent and Au grades 0.19–0.29 g/t. Mineralization and alteration mostly occurred during magmatic-hydrothermal breccia formation. Chalcopyrite and bornite occur primarily as coarse- to fine-grained breccia cement, with lesser disseminations, veins and replacements. Bornite-rich, pyrite-deficient high-grade zones of mineralization (>1% Cu, up to >5% Cu locally) occur within broader chalcopyrite-rich domains (Cu grades of 0.3 to 1.0 %). Pyrite is the dominant sulfide on the deposit periphery (up to 1–2% locally).udThere were five major mineralization and alteration events in the NEZ: 1) early-stage (pre-breccia), 2) main-stage (syn-breccia), 3) post-brecciation late-stage mineralization, 4) barren intrusions, veins and vein breccia, and 5) epithermal-style veins. Main stage alteration and mineralization assemblages are zoned vertically and laterally through the breccia body. Magmatic-hydrothermal brecciation focused the high temperature mineralizing fluids, forming a core of potassic alteration (K-feldspar-magnetite-albite-calcite ± biotite ± augite ± anhydrite ± epidote and Cu-Fe-sulfides) surrounded by a halo of propylitic alteration (pyrite-chlorite-epidote ± albite ± sericite). Calc-potassic (garnet ± epidote) and sodic (albite) alteration assemblages are variably abundant within the broader domains of potassic and propylitic alteration. Alteration minerals are consistent with temperatures >300°C and near-neutral to alkalic pH fluids during stages 1, 2 and 3. Acidic and lower temperature fluids were associated with stages 4 and 5.udLaser-ablation ICP-MS analyses of sulfide trace element contents of the NEZ have shown bornite is enriched in Ag (average 913 ppm), Bi and Se. Chalcopyrite is enriched in Pb, Zn and Se, with Zn concentrations increasing and Pb concentrations decreasing from the centre of the deposit to its margins. Pyrite is enriched in Cu, Zn, Cd, Co, Ni, Se, Te and Au with these elements substituted into the pyrite structure or evenly disseminated as nano-particles. Pyrite contains abundant micro-inclusions of chalcopyrite, galena,udsphalerite, electrum and tellurides. Gold contents were found to be 1–3 orders of magnitude higher in pyrite (0.011–4.32 ppm, plus one outlier of 483.2 ppm) than in chalcopyrite (0.050–1.29 ppm). Gold was mostly below detection limits in bornite. Gold, Pd- and Pt-bearing inclusions were primarily detected in pyrite on the fringes of the deposit. This contradicts the assay data that shows high gold grades are associated with areas rich in bornite and chalcopyrite. This implies that the Au in the high-grade ore zones does not occur in Cu-sulfides, but in another phase, possibly electrum.udThe (δ^{34}S_{sulfide}) isotopic compositions of main- and late-stage chalcopyrite, pyrite and bornite range from -7.1 to +1.4 per mil, with most between -3 and -4 per mil. Sulfur isotopic compositions of anhydrite and gypsum were between +6.2 and +9.8 per mil, with two outliers of +13.6 and +14.0 per mil. These values, together with the presence of hematite, are consistent with an oxidized (sulfate predominant), high-temperature (>400°C) magmatic-hydrothermal fluid. Limited sulfide geothermometry indicates that ore precipitated at temperatures from ~ 480° to ~ 250°C. The `δ^(34)S` values of main-stage sulfides define zonation patterns across the deposit, from low `δ^(34)S` values in the core to higher `δ^(34)S` values near the deposit periphery. Changes in redox conditions, pH changes, cooling, and water-rock interaction are concluded to have been important processes of ore formation and hydrothermal alteration in the NEZ.udHydrothermal calcite occurs throughout the paragenesis, and several processes may have contributed to its precipitation, including boiling, `CO_2` degassing, pH increase, and water-rock interaction. Calcite `δ^(13)C` values range from -0.2 to -10.5 per mil (average -3.0 ‰), and `δ^(18)O` values from +4.0 to +20.9 per mil (average +15.4 ‰). The C-O isotopic values are not consistent with simple precipitation from a “normal” magmatically-derived source hydrothermal fluid. Enriched `δ^(13)C` values suggest the involvement of a heavy carbon source, such as limestone or seawater. However, `δ^(18)O` isotopic data preclude the involvement of meteoric or seawater in the formation of the NEZ, until stage 4.udLead isotopic data suggest mixing of mantle and crustal sources during mineralization. Main-stage chalcopyrite, pyrite and late-stage galena have (^{206/204}Pb) values of 18.77–18.92, (^{207/204}Pb) of 15.56–15.59 and (^{208/204}Pb) of 38.22–38.32. Strontium isotopic data (0.70331 to 0.70371) provide evidence of a strongly depleted mantle source of Sr with minor crustal input. Epsilon Nd values for main-stage apatite range between +5.9 and +6.5, also indicating a depleted mantle source. Stage 5 carbonate (^{206/204}Pb) values of 18.96–19.04, (^{207/204}Pb) of 15.57–15.59 and (^{208/204}Pb) of 38.26–38.36, from epithermal-textured veins suggest that telescoping of an epithermal environment into the NEZ occurred ~100 m.y. after breccia formation.udThe stable and radiogenic isotopic data provide evidence that the silica-undersaturated alkalic Mt. Polley Complex formed due to carbonate assimilation prior to mineralization. This process can explain both the `δ^(13)C-δ^(18)O` isotopic data and the silica-undersaturated composition of the magmatic-hydrothermal system. The CO2 released during assimilation of carbonate could have promoted magmatic-hydrothermal brecciation, thereby leading to high-grade ore formation. Silica-undersaturated alkalic porphyry systems may preferentially form in arc terranes built on a carbonate-bearing substrate or where carbonate platforms are subducted.
机译:山。 Polley碱性Cu-Ag-Au斑岩位于加拿大山脉地带的三叠纪晚期至侏罗纪Quesnellia岛弧早期。在中奎松带中,三叠纪中部细粒海洋沉积物±石灰岩被厚厚的三叠纪晚海层覆盖,碱性玄武质到安第斯山脉火山(尼古拉群),以及相关的次火山岩侵入和晚三叠纪时代的小石灰岩。山。波利综合体长6.0公里,宽3.5公里,是西北偏北走向的复合碱侵入性(角砾岩)综合体。沿该地层长度散布的几个矿床之一,使不列颠哥伦比亚省成为富金碱性斑岩矿床的典型位置。山。 Polley复合物含有不饱和至辉石岩,辉长岩,闪长岩和正长岩的二氧化硅,但主要由辉长岩,辉长岩和相关角砾岩体组成,所有这些都在电弧岩浆作用的最后阶段(209.4 Ma至195.4 Ma之间)被放置。矿化发生在209至204 Ma之间。方铅矿脉的新的铅模型年龄为207.8±1.8 Ma与这些年龄相符。 udNEZ是由Mt所拥有的碱性Cu-Ag-Au斑岩矿床。 Polley建筑群。矿石的品位明显高于其他山矿区。 Polley,平均铜品位为0.8-1.0%,金品位平均为0.19-0.29 g / t。矿化和蚀变主要发生在岩浆热液角砾岩形成过程中。黄铜矿和堇青石主要以粗粒至细粒角砾胶结水泥的形式出现,传播,脉络和置换较少。在较宽的富黄铜矿域(Cu品位为0.3%至1.0%)中,出现了富含硼铁矿,缺乏黄铁矿的高品位矿化带(Cu> 1%,局部最高Cu> 5%)。黄铁矿是矿床外围的主要硫化物(局部高达1-2%)。 ud NEZ中有五个主要的矿化和蚀变事件:1)早期(角砾岩前期),2)主要阶段(同步化) -角砾岩),3)角砾岩化后期后期矿化,4)贫瘠的侵入,静脉和静脉角砾岩以及5)超热型脉。主阶段蚀变和矿化组合通过角砾岩体垂直和横向划分。岩浆热液水凝作用使高温矿化流体集中,形成钾化蚀变的核心(钾长石-磁铁矿-方解石±黑云母±钠长石±硬石膏±附石和Cu-Fe硫化物),周围被丙状蚀变的晕圈(黄铁矿-亚氯酸盐-闪石±钠长石±绢云母)。钙钾(石榴石±附子)和苏打(阿比特)的蚀变组合在钾和丙炔蚀变的较宽域内变化丰富。阶段1、2和3中,蚀变矿物与温度> 300°C一致,pH流体接近中性至碱性。酸性和低温流体与阶段4和5相关。 ud激光烧蚀ICP-MS分析痕量硫化物NEZ的元素含量表明,堇青石富含Ag(平均913 ppm),Bi和Se。黄铜矿富含Pb,Zn和Se,从矿床中心到其边缘,Zn浓度增加而Pb浓度减少。黄铁矿富含铜,锌,镉,钴,镍,硒,碲和金,这些元素被置换成黄铁矿结构或均匀地分散为纳米颗粒。黄铁矿中含有丰富的微量元素,包括黄铜矿,方铅矿,辉石矿,电和碲化物。发现黄铁矿(0.011-4.32 ppm,加上一个异常值483.2 ppm)比黄铜矿(0.050-1.29 ppm)中的金含量高1-3个数量级。金矿中的金矿大多低于检测极限。主要在矿床边缘的黄铁矿中检测到金,钯和铂的夹杂物。这与测定数据相矛盾,该数据表明,高品位的金与富钙铁矿和黄铜矿的地区有关。这意味着高品位矿带中的金不会在硫化铜中发生,而是在另一相中可能在电子中发生。 ud (δ^ {34} S_ {sulfide} )的主要和晚期同位素组成阶段的黄铜矿,黄铁矿和堇青石的含量范围是每密耳介于-7.1至+1.4之间,大部分介于每密尔3-4至-4之间。硬石膏和石膏的硫同位素组成为每密尔+6.2至+9.8,两个异常值分别为每密耳+13.6和+14.0。这些值以及赤铁矿的存在与氧化(占主导地位的硫酸盐)高温(> 400°C)岩浆热液一致。有限的硫化物地热测定法表明,矿石在〜480°至〜250°C的温度下析出。主阶段硫化物的δ^(34)S值定义了整个矿床的分区模式,从岩心中的低δ^(34)S值到矿床附近的较高的δ^(34)S值。周边。氧化还原条件的变化,pH值的变化,冷却,和水-岩相互作用被认为是NEZ中矿石形成和热液蚀变的重要过程。增加,与水岩相互作用。方解石的δ^(13)C值范围为-0.2至-10.5 / mil(平均值-3.0‰),而δ^(18)O的值范围为+4.0至+ 20.9 / mil(平均值+15.4‰) 。 C-O同位素值与“正常”岩浆源热液的简单沉淀不一致。富集的δ^(13)C值表明涉及重碳源,例如石灰石或海水。然而,δ^(18)O同位素数据排除了NEZ形成过程中流星或海水的参与,直到阶段4。 ud铅同位素数据表明在矿化过程中地幔和地壳源的混合。主阶段的黄铜矿,黄铁矿和晚期方铅矿的(^ {206/204} Pb )值为18.77–18.92,(^ {207/204} Pb )的值为15.56–15.59和(^ {208 / 204} Pb )的38.22–38.32。锶同位素数据(0.70331至0.70371)提供了证据,表明地壳中Sr的源极耗尽,而地壳输入量较小。主阶段磷灰石的Epsilon Nd值在+5.9至+6.5之间,也表明地幔源已耗尽。第5阶段碳酸盐(^ {206/204} Pb )值为18.96–19.04,(^ {207/204} Pb )为15.57–15.59和(^ {208/204} Pb )为38.26– 38.36(来自超热纹理的静脉)表明,超热环境向NEZ的伸缩发生了约100 my角稳定的和放射性同位素数据提供了证据,表明二氧化硅欠饱和的碱性Mt。 Polley复合物是由于矿化前碳酸盐的同化作用而形成的。该过程可以解释岩浆热液系统的δ^(13)C-δ^(18)O同位素数据和二氧化硅欠饱和成分。碳酸盐同化过程中释放的CO2可能促进了岩浆-水热凝结作用,从而导致高品位矿石的形成。二氧化硅欠饱和的碱性斑岩系统可能会优先在含碳酸盐基质或俯冲碳酸盐平台的弧形地层中形成。

著录项

  • 作者

    Pass HE;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号