首页> 外文OA文献 >Geology and genesis of the Lewis Ponds carbonate and volcanic-hosted massive sulfide deposits, New South Wales, Australia
【2h】

Geology and genesis of the Lewis Ponds carbonate and volcanic-hosted massive sulfide deposits, New South Wales, Australia

机译:澳大利亚新南威尔士州刘易斯池塘碳酸盐岩和火山成因的大型硫化物矿床的地质和成因

摘要

The Lewis Ponds carbonate and volcanic-hosted Zn-Pb-Cu-Ag-Au-rich massive sulfide depositsudare located near the western margin of the Hill End Trough, in the eastern Lachlan Fold Belt ofudNew South Wales. Two stratabound massive sulfide zones, Main and Toms occur in a tightlyudfolded Late Silurian marine succession of volcaniclastic sandstone, polymictic breccia,udlimestone-clast breccia, siltstone and mudstone. They have a combined indicated resource ofud5.7 Mt, grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main zone occursudwithin a thick unit of poorly-sorted mixed provenance breccia, limestone-clast breccia andudpebbly-granular sandstone, whereas Toms zone is hosted by siltstone. The sedimentary rocksudunconformably overlie a thick succession of quartz-plagioclase phyric dacite and stronglyudfoliated, chlorite-sericite-altered dacite.udVariably recrystallised fossiliferous limestone occurs throughout the Lewis Ponds host sequenceudin thick, tabular units of poorly-sorted breccia and fault-bound lenses of megabreccia.udLimestone clasts vary in size from small pebbles to 90 m boulders. The mixed provenanceudbreccia, limestone-clast breccia and sandstone were deposited in a moderately deep water,udbelow wave-base slope environment, around the margins of a high-level intrusive dacite centre.udDetrital volcanic and sedimentary components were derived from multiple source areas withinudthe basin and in the adjacent hinterland. The massive sulfide lenses occur along the eastern limb of a regional-scale D I anticline. Theudadjacent syncline has been partly truncated by a 200-250 m wide, NNW-trending high strainudzone termed the Lewis Ponds fault. Syn-tectonic quartz ± sulfide veins and steeply dipping,udanastomosing shear zones surround the Toms massive sulfide lens. The variably folded andudboudinaged quartz veins resulted from periodic brittle shear failure and extension during andudafter the D I deformation. Pinch-and-swell structures, boudins, catalcastic breccia and kink foldsudoccur in the massive sulfide. Main zone, located west of the fault is significantly less deformedudthan Toms zone. However, reversals in stratigraphic facing and vergence indicate that tightudparasitic folds occur in the Main zone host sequence. Mineralisation at Lewis Ponds probablyudpre-dated shearing along the Lewis Ponds fault.udAn asymmetric, semiconformable Mg-Fe-Ca-Ba-rich hydrothermal alteration envelopeudsurrounds the massive sulfide lenses. Mg-chlorite occurs at the top the footwall volcanicudsuccession south of Main zone and grades outwards into a weak pervasive sericite-quartz ±udFe-Mg-chlorite assemblage. The compositions of recrystallised phyllosilicates varyudsystematically with whole rock geochemistry, alteration intensity and proximity to the Tomsudmassive sulfide lens. Hydrothermal alteration of dacite in the Toms zone footwall involved MgO, Fe203, K2 0 and Ba enrichment and Na2O, CaO and Sr depletion. The addition orudremoval of Si02 contributed to net gains of 0-75 g/100g in dacite C and net losses ofud0-50 g/100g in dacite A, except where MgO and Fe 203 gains offset the loss of Si02. In contrast,udweak sericite-chlorite-calcite alteration of coherent dacite in the Main zone footwall led to netudlosses of 10-40 g/100g.udConformable, texturally destructive alteration assemblages associated with the two mineralisedudzones include dolomite-chlorite-talc, chlorite-pyrite, quartz-dolomite-chlorite and quartz-sericite ±udhyalophane. Dolomite, Mg-chlorite, talc, phlogopite, calcite, quartz and sulfides haveudoverprinted the clasts and matrix in the breccia and sandstone units in Main zone. Relict crinoidudfossils are preserved in even the most intensely altered rocks, where dolomite, chlorite and talcudhave replaced the original calcite. Irregular honeycomb vuggy and botryoidal sulfide-dolomiteudtextures in the breccia and sandstone units indicate dissolution and precipitation of dolomiteudduring mineralisation.udDolomite associated with the massive sulfide lenses is characterised by low [delta to the power 18]vsmowud(6 to 16%o) and [delta to the power I3Cvpdb (-II to 0%o) values relative to the regional fossiliferous limestone. Fluid inclusion and stable isotope data indicate that the dolomite precipitated from a low temperature (166-232°C for 1 000 m water depth), weakly saline (1.4 to 7.7 eqiv wt % NaCl) fluid, possibly depleted in [omicron] and C isotopes ([delta to the power 18 omicron] = -2.5 to 0.3%o, [delta to the power 13]C = -14 to -4%o). The dolomite probably formed during diagenesis and hydrothermal alteration, by fluid-rock interactions between evolved seawater at 150-250°C and the limestone-bearing host sediment, and/or mixing between evolved seawater at 350°C and a seawater-dominant pore fluid at 100°C.udThe massive sulfide lenses consist of pyrite, sphalerite and galena, with subordinate tetrahedrite, chalcopyrite, arsenopyrite, pyrrhotite, stannite, pyrargyrite and electrum. Paragenetically early framboidal, dendritic, reticulate, botryoidal and spongy Fe-sulfide aggregates and bladed pyrrhotite pseudomorphs of sulfate occur throughout the breccia and sandstone beds that host Main zone, but are rarely preserved in the coarse grained, annealed massive sulfide inudToms zone. Pre-tectonic carbonate-chalcopyrite-pyrite veins in the footwall volcanic succession, immediately south of Toms zone may represent a stringer zone displaced from the Toms massive sulfide lens. The stringer veins also contain native bismuth, sphalerite and Se-Bi-Ag-rich galena.udSulfur isotope values in the massive sulfide ([delta to the power 34]S = 1.7-5.0%0) and footwall stringer veins (6345= 3.9-7.4%0), indicate that the hydrothermal fluid contained a homogenous mixture of magmatic S, derived from the host volcanics rocks and reduced seawater sulfate. The lower average [delta to the power 34]34S values in the massive sulfide lenses may have resulted from a component of partially reduced seawater sulfate or biogenic S, leached out of the host sediment.udTextural, geochemical and isotopic data indicate that the Main zone massive sulfide lenses formed by lateral fluid flow and sub-sea floor replacement of the poorly-sorted, carbonate-bearing breccia and sandstone beds. Low temperature dolomitisation of the carbonate-bearing sediment during diagenesis created secondary pore spaces and provided a reactive host for fluid-rock interactions. Base metal sulfides, chlorite, dolomite, calcite, quartz and talc filled pore spaces throughout the carbonate-altered breccia and sandstone units. Toms zone probably formed in fine-grained sediment at or near the sea floor, above a zone of focused up-flowing hydrothermal fluids.udPyrite, pyrrhotite, sphalerite, galena, tetrahedrite and electrum precipitated from a relatively low temperature 150-250°C, reduced hydrothermal fluid. Paragenetically early dendritic, reticulate and spongy Fe-sulfide aggregates in the Main zone host sequence formed by rapid mixing between the hydrothermal fluid and cooler pore fluids in the matrix of the breccia and sandstone. Base metal sulfide deposition in Main zone probably resulted from fluid mixing, dissolution of dolomite and increased fluid pH. Galena, sphalerite and chalcopyrite overprinted the primitive Fe-sulfide textures. As the hydrothermal system intensified, a high temperature >280°C, strongly reduced fluid carrying Sn, Cu, Se and Bi was sourced from deep within the footwall volcanic succession. Carbonate-chalcopyrite-pyrite stringer veins and dolomite-chalcopyrite-pyrite-stannite veins formed in the Footwall Copper zone and Toms zone Central lens respectively. Chalcopyrite partly replaced the Zn-Pb-rich massive sulfide in Main zone.udDuring the DI deformation, fracture-controlled fluids remobilised sulfides into syn-tectonic, quartz and carbonate veins within the Lewis Ponds fault zone and adjacent footwall volcanic succession, resulting in extensive Cu, Au and Zn anomalies. Massive sulfide remobilisation may have occurred over tens to hundreds of metres. Talc, quartz-sericite, chlorite and Fe-Mg-Mn-carbonate assemblages overprinted the dolomite, chlorite and sericite-altered rocks in the Toms zone host sequence.udLewis Ponds is an unusual stratabound, carbonate and volcanic-hosted massive sulfide deposit. The intimate spatial association between fossiliferous limestone, hydrothermal carbonate and base metal sulfides at Lewis Ponds provides a basis for new exploration targets in Siluro-Devonian marine successions elsewhere in New South Wales.
机译:位于新南威尔士州拉克兰褶皱带东部希尔山槽西部边缘附近的路易斯湖碳酸盐岩和火山岩富集的富含Zn-Pb-Cu-Ag-Au的块状硫化物矿床。两个层状结合的块状硫化物带,主要和汤姆斯发生在志留纪晚期海相的火山碎屑砂岩,多角砾岩,石灰岩-碎屑角砾岩,粉砂岩和泥岩中。他们的综合指示资源为ud5.7 Mt,品位为3.5%Zn,2.0%Pb,0.19%Cu,97 g / t Ag和1.9 g / t Au。主区出现在厚厚的混合源角砾岩,石灰岩-碎屑角砾岩和多卵状砂岩的厚单元内,而汤姆斯带则以粉砂岩为主。沉积岩 udconconformly覆盖在厚厚的一连串石英斜长石斑岩和强烈去屑的绿泥石绢云母改变的dacite上。 ud石灰石碎块的大小不一,从小卵石到90 m的巨石。混合的物源角砾岩,石灰石-碎屑角砾岩和砂岩沉积在中等深度的水中 在波浪基斜坡环境下,在高位侵入性达菲岩中心的边缘附近。 ud碎屑火山岩和沉积物成分来自多个盆地内及邻近腹地的源区。块状硫化物晶状体沿区域尺度的D I背斜的东边出现。相邻的向斜向斜线已被200-250 m宽的NNW趋势高应变 udzone截断,该区域称为Lewis Ponds断层。同构造的石英±硫化物脉和陡倾的 udanastomosmos剪切带围绕着Toms块状硫化物透镜。在D I变形期间和之后,由于周期性的脆性剪切破坏和伸展,导致石英脉的折叠和破裂。块状硫化物中夹有膨胀结构,布丁,催化力角砾岩和扭折。位于断层以西的主区变形程度小于汤姆斯区。但是,地层朝向和聚散的逆转表明在主区主层中出现了紧密的超寄生褶皱。 Lewis Ponds的矿化可能沿着Lewis Ponds断层的剪切作用过大。 ud不对称,半整合的富含Mg-Fe-Ca-Ba的热液蚀变包裹层覆盖了块状硫化物晶状体。亚氯酸镁发生在主区以南的下盘山火山超演替活动的顶部,向外渐渐变成一种弱渗透性绢云母-石英± udFe-Mg-亚氯酸盐组合。重结晶的层状硅酸盐的组成随整个岩石的地球化学,蚀变强度和与Toms udmassive硫化物晶状体的接近而系统地变化。汤姆斯区底盘中的辉绿岩热液蚀变涉及MgO,Fe2O3,K2 0和Ba富集以及Na2O,CaO和Sr的贫化。 SiO 2的添加或去除导致了钠铁矿C的净收益为0-75 g / 100g,而镁铁矿A的净损失为 ud0-50 g / 100g,除非MgO和Fe 203的收益抵消了SiO2的损失。相比之下,主区底盘中粘连的绢云母的 udwe弱的绢云母-绿泥石-方解石蚀变导致净损失 10-40 g / 100g。 ud与两个矿化的 udzone相关的适形,破坏性的蚀变组合包括白云石-绿泥石-滑石粉,绿泥石-黄铁矿,石英-白云石-亚氯酸盐和石英绢云母± udhyalophane。白云岩,镁亚氯酸盐,滑石,金云母,方解石,石英和硫化物已经覆盖了主区角砾岩和砂岩单元的碎屑和基质。即使在变化最剧烈的岩石中也保留了残存的海龙骨化石,白云石,绿泥石和滑石粉代替了原始方解石。角砾岩和砂岩单元中不规则的蜂窝状蓬松状和类葡萄状硫化物-白云石 udtextures表明白云岩的溶解和沉淀成矿过程中的udd。 ud与块状硫化物晶状体相关的白云石的特征是低[δ18的屈光度] vsmow ud(6到16%o)和[相对于区域化石石灰石的功率I3Cvpdb(-II到0%o)值的增量。流体包裹体和稳定的同位素数据表明,白云石是从低温(166-232°C,深度为1000 m的水),弱盐水(1.4至7.7 eqiv wt%NaCl)的流体中析出的,可能会耗尽[]和[C]同位素(δ至18幂的三角= -2.5至0.3%o,δ至13幂的三角碳= -14至-4%o)。白云岩可能是在成岩作用和热液蚀变过程中形成的,其原因是150-250°C的析出海水与含石灰石的宿主沉积物之间发生了流体-岩石相互作用,和/或350°C的析出的海水与以海水为主的孔隙流体之间发生了混合。在100°C下。 ud大块的硫化物透镜由黄铁矿,闪锌矿和方铅矿组成,下级有四面体,黄铜矿,毒砂,黄铁矿,锡矿,硫铁矿和电子。在共生主区的角砾岩和砂岩层中,共生的早期类黄铁,树突状,网状,类硼酸盐和海绵状Fe-硫化物聚集体和硫酸盐的片状黄铁矿假晶形发生,但很少保留在 udToms区域的粗粒,退火的块状硫化物中。在汤姆斯带以南的下盘山火山演替中的前构造碳酸盐-黄铜矿-黄铁矿脉可能代表了一个从汤姆斯块状硫化物透镜中移出的纵梁带。桁条脉中还包含天然铋,闪锌矿和富含Se-Bi-Ag的方铅矿。 ud大块硫化物中的硫同位素值(δ的幂34] S = 1.7-5.0%0)和底壁桁条脉(6345 = 3.9-7.4%0),表明热液中含有岩浆S的均质混合物,岩浆S来自于主火山岩和还原的海水硫酸盐。块状硫化物透镜中的平均[34屈光度34] 34S值较低,可能是由于部分硫酸盐或生物硫从海水中析出后从宿主沉积物中浸出所致。 ud质地,地球化学和同位素数据表明区域内大量的硫化物透镜,是由侧向流体流动和海底置换不良的,含碳酸盐的角砾岩和砂岩层形成的。在成岩过程中,含碳酸盐沉积物的低温白云石化作用形成了次生孔隙空间,为流体-岩石相互作用提供了反应主体。在整个碳酸盐改变的角砾岩和砂岩单元中,贱金属硫化物,绿泥石,白云石,方解石,石英和滑石填充了孔隙空间。汤姆斯区可能形成在海床或其附近的细粒沉积物中,位于集中向上流动的热液区域之上。 ,减少热液。在角砾岩和砂岩基质中,热液流体和较冷的孔隙流体之间快速混合,从而在主区主序中共生了早期的树枝状,网状和海绵状铁硫化物聚集体。主区中贱金属硫化物的沉积可能是由于流体混合,白云石溶解和流体pH值升高所致。方铅矿,闪锌矿和黄铜矿覆盖了原始的硫化铁纹理。随着水热系统的加强,从底盘火山演替层深处获得了一个温度高于280°C的,强烈还原的携带Sn,Cu,Se和Bi的流体。碳酸盐-黄铜矿-黄铁矿纵梁脉和白云石-黄铜矿-黄铁矿-锡矿脉分别形成在下盘铜带和汤姆斯带中央晶状体上。黄铜矿部分地替代了主区富含Zn-Pb的块状硫化物。 ud在DI变形过程中,裂缝控制的流体将硫化物迁移到Lewis Ponds断层带和邻近的下盘山火山演替区内的构造,石英和碳酸盐岩脉中,从而导致广泛的铜,金和锌异常。大规模的硫化物迁移可能已经发生了数十到数百米。滑石,石英绢云母,绿泥石和Fe-Mg-Mn-碳酸盐组合物覆盖了汤姆斯带宿主层序中的白云岩,绿泥石和绢云母改变的岩石。 Lewis Ponds的化石石灰石,热液碳酸盐和贱金属硫化物之间的密切空间联系为新南威尔士州其他地方的Siluro-Devonian海洋演替中的新勘探目标提供了基础。

著录项

  • 作者

    Agnew MW;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号