首页> 外文OA文献 >The Complexity of Fredholm Equations of the Second Kind: Noisy Information About Everything
【2h】

The Complexity of Fredholm Equations of the Second Kind: Noisy Information About Everything

机译:第二类Fredholm方程的复杂性:有关一切的嘈杂信息

摘要

We study the complexity of Fredholm problems of the second kind $u - int_Omega k(cdot,y)u(y),dy = f$. Previous work on the complexity of this problem has assumed that $Omega$ was the unit cube~$I^d$. In this paper, we allow~$Omega$ to be part of the data specifying an instance of the problem, along with~$k$ and~$f$. More precisely, we assume that $Omega$ is the diffeomorphic image of the unit $d$-cube under a $C^{r_1}$ mapping~$ho:I^do I^l$. In addition, we assume that $kin C^{r_2}(I^{2l})$ and $fin W^{r_3,p}(I^l)$ with $r_3>l/p$. Our information about the problem data is contaminated by $delta$-bounded noise. Error is measured in the $L_p$-sense. We find that the $n$th minimal error is bounded from below by $Theta(n^{-mu_1}+delta)$ and from above by $Theta(n^{-mu_2}+delta)$, where $$mu_1 = minleft{rac{r_1}{d}, rac{r_2}{2d}, rac{r_3-(d-l)/p}dight} qquadext{and}qquad mu_2 = minleft{rac{r_1-u}d, rac{r_2}{2d}, rac{r_3-(l-d)/p}dight},$$ with $$u = egin{cases} displaystylerac{d}p & ext{if $r_1ge 2$, $r_2ge2$, and $dle p$}, & 1 & ext{otherwise}. end{cases}$$ In particular, the $n$th minimal error is proportional to $Theta(n^{-mu_1}+delta)$ when $p=infty$. The upper bound is attained by a noisy modified Galerkin method, which can be efficiently implemented using multigrid techniques. We thus find bounds on the $arepsilon$-complexity of the problem, these bounds depending on the cost $mathbf{c}(delta)$ of calculating a $delta$-noisy function value. As an example, if $mathbf{c}(delta)=delta^{-b}$, we find that the $arepsilon$-complexity is between $(1/arepsilon)^{b+1/mu_1}$ and $(1/arepsilon)^{b+1/mu_2}$.
机译:我们研究第二类$ u的Fredholm问题的复杂性- int_ Omega k( cdot,y)u(y),dy = f $。以前有关此问题的复杂性的工作已假定$ Omega $为单位立方体〜$ I ^ d $。在本文中,我们允许〜$ Omega $以及〜$ k $和〜$ f $成为指定问题实例的数据的一部分。更准确地说,我们假设$ Omega $是$ C ^ {r_1} $映射〜$ rho :I ^ d 到I ^ l $的单元$ d $ -cube的微分像。另外,我们假设C ^ {r_2}(I ^ {2l})$中的$ k 和W ^ {r_3,p}(I ^ l)$中的$ f 在$ r_3> l / p $的情况下。我们有关问题数据的信息受到$ del $边界噪声的污染。错误以$ L_p $感测。我们发现$ n $ th个最小错误的下限是$ Theta(n ^ {- mu_1} + delta)$,而上边是$ Theta(n ^ {- mu_2} + delta) $,其中$$ mu_1 = min left { frac {r_1} {d}, frac {r_2} {2d}, frac {r_3-(dl)/ p} d right } qquad text {and} qquad mu_2 = min left { frac {r_1- nu} d, frac {r_2} {2d}, frac {r_3-(ld)/ p} d right },$$与$$ nu = begin {cases} displaystyle frac {d} p和 text {if $ r_1 ge 2 $,$ r_2 ge2 $和$ d le p $}, & 1和 text {otherwise}。 end {cases} $$特别是,当$ p = infty $时,第n个最小误差与$ Theta(n ^ {- mu_1} + delta)$成正比。上限是通过嘈杂的改进Galerkin方法获得的,该方法可以使用多网格技术有效地实现。因此,我们找到问题的$ varepsilon $-复杂度的界限,这些界限取决于计算$ delta $-噪声函数值的成本$ mathbf {c}( delta)$。例如,如果$ mathbf {c}( delta)= delta ^ {-b} $,我们发现$ varepsilon $-复杂度在$(1 / varepsilon)^ {b + 1 / mu_1} $和$(1 / varepsilon)^ {b + 1 / mu_2} $。

著录项

  • 作者

    Werschulz Arthur G.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号