首页> 外文OA文献 >Monitoring project impact on biomass increase in the context of the Great Green Wall for the Sahara and Sahel Initiative in Senegal
【2h】

Monitoring project impact on biomass increase in the context of the Great Green Wall for the Sahara and Sahel Initiative in Senegal

机译:在塞内加尔撒哈拉沙漠和萨赫勒倡议的“绿色长城”背景下,监测项目对生物量增加的影响

摘要

Land degradation and desertification represent a major threat to the population and ecosystems of (semi)-arid regions like the Sahel and the Sahara. In 2007, the African Union launched a pan-African programme, the Great Green Wall for the Sahara and the Sahel Initiative (GGWSSI) to reverse land degradation and desertification in the region, improve food security and support local people to adapt to climate change. Within the GGWSSI different kinds of projects have been implemented. In order to quickly evaluate the effectiveness of (a large number of) restoration and sustainable rangeland/agriculture projects, a methodology to remotely assess the biophysical impacts of diverse interventions is desirable. Within the Administrative Arrangement Technical and scientific Support to agriculture and Food and Nutrition Security we aim to develop a multi-scale remote sensing (RS) based approach to monitor the biophysical impact of sustainable agriculture and rangeland projects. Specifically, we propose to utilize a biophysical indicator obtained via satellite imagery and compare the difference between project sites and corresponding reference sites before and after the intervention. Besides this specific comparison between project and reference sites, the general state and development of vegetation and other parameters (like precipitation) on a larger scale are important information for project planning in general and the project impact assessment. This report focuses on this general analysis of vegetation and precipitation trends in north Senegal and provides some first basic approaches for RS-based impact assessment on biomass increase of selected GGWSSI projects. An upcoming paper will concentrate on a more advanced approach of impact assessment. Time series of satellite-derived precipitation estimates (P, the main driver of vegetation growth in the area) and Normalized Difference Vegetation Index (NDVI, indicating vegetation amount and health status) data were utilised to characterize general precipitation and vegetation characteristics in the region and to compute long- (for P) and short-term linear trends (for P and NDVI). This is important to distinguish between general climatic trends in the region and vegetation trends due to project intervention. The results indicate a significant long-term increase in annual precipitation sums over the period 1981–2014 in the study area, while there is no significant precipitation trend in the more recent (and shorter) time period (2001–2014). The NDVI-based analysis of vegetation revealed some local positive and negative trends. As there is no significant precipitation trend over this time, we assume that other/additional factors than precipitation changes need to be considered as drivers for the vegetation trends. For an in-depth analysis of local vegetation changes (also with respect to land degradation) future studies should also include other sources of information (e.g. field studies, interviews of local people).The basic assessment of possible biophysical impacts of selected restoration projects was done via visual inspection of very high resolution images before and after the intervention and by computing differences of maxNDVI between project sites and reference sites. For some projects, slight positive changes after the intervention could be observed, indicating an increase of biomass. Other projects did not show any visible positive effect of the interventions. Further research is currently in progress to develop a more automatized and statistically sound method for this type of comparison. Should this advanced approach confirm the failure of some projects, further studies should be undertaken to understand the reasons for the failure to guide future interventions and project planning/monitoring.
机译:土地退化和荒漠化是对(半)干旱地区如萨赫勒地区和撒哈拉沙漠地区的人口和生态系统的主要威胁。 2007年,非洲联盟启动了泛非方案,撒哈拉沙漠绿墙和萨赫勒倡议(GGWSSI),以扭转该地区的土地退化和荒漠化,改善粮食安全并支持当地人民适应气候变化。在GGWSSI中,已实施了各种项目。为了快速评估(大量)修复和可持续牧场/农业项目的有效性,需要一种方法来远程评估各种干预措施对生物物理的影响。在《行政安排对农业以及粮食和营养安全的技术和科学支持》中,我们旨在开发一种基于多尺度遥感的方法,以监测可持续农业和牧场项目的生物物理影响。具体来说,我们建议利用通过卫星图像获得的生物物理指标,并比较干预前后项目站点和相应参考站点之间的差异。除了项目和参考地点之间的这种特定比较之外,更大范围内植被的总体状态和发展以及其他参数(例如降水)对于总体上的项目规划和项目影响评估也具有重要的信息。本报告侧重于塞内加尔北部植被和降水趋势的一般分析,并为基于RS的选定GGWSSI项目生物量增加的影响评估提供了一些基本方法。即将发表的论文将集中在影响评估的更高级方法上。利用卫星得出的降水量估计的时间序列(P,该区域植被生长的主要驱动力)和归一化植被指数(NDVI,表明植被数量和健康状况)数据来表征该地区的一般降水量和植被特征。计算长期(对于P)和短期线性趋势(对于P和NDVI)。这对于区分该地区的总体气候趋势和由于项目干预而引起的植被趋势非常重要。结果表明,该研究区域在1981-2014年期间年降水量的长期增长显着,而在最近(和较短)时间段(2001-2014年)中没有显着的降水趋势。基于NDVI的植被分析显示了一些局部的积极和消极趋势。由于这段时间内没有明显的降水趋势,因此我们认为除降水变化以外的其他/其他因素也需要考虑为植被趋势的驱动因素。为了深入分析当地植被变化(还涉及土地退化),未来的研究还应包括其他信息来源(例如实地研究,对当地人的采访)。对某些修复项目可能的生物物理影响的基本评估是通过对干预前后的高分辨率图像进行目视检查以及计算项目站点和参考站点之间的maxNDVI差异来完成。对于某些项目,干预后可以观察到轻微的积极变化,表明生物量增加。其他项目未显示干预措施有任何可见的积极影响。目前正在进行进一步的研究,以开发出一种用于这种类型的比较的更加自动化和统计合理的方法。如果这种先进的方法确认了某些项目的失败,则应进行进一步的研究以了解失败的原因,以指导未来的干预措施和项目计划/监控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号