首页> 外文OA文献 >Intrinsic Three-Dimensionality of Laminar Shock Wave/ Boundary Layer Interactions
【2h】

Intrinsic Three-Dimensionality of Laminar Shock Wave/ Boundary Layer Interactions

机译:层状激波/边界层相互作用的内在三维

摘要

This work has detailed the existence of a new class of shock wave/ boundary layerinteraction (SWBLI) behaviour that exhibits markedly different dynamic characteristicsto the previous models that assume 2D steady state laminar, transitional or turbulent flow.An intrinsically 3D unsteady laminar flow has been shown to establish within theseparation bubble and the process that governs this formation has been studied in detailusing high fidelity, unsteady, 3D computational fluid dynamics (CFD) simulations. Theselaminar effects have been shown to produce significant additional heating at thereattachment point of the primary recirculation vortex compared with 2D simulations andtheory. The magnitude of this additional heating has been shown to be twice that of a 2Dlaminar simulation and provides an alternative conclusion to arguments presented in theliterature regarding transition to turbulence of these SWBLI.The results detail that the formation of a secondary vortex beneath the primary vortextriggers the onset of 3D unsteady SWBLI flow. The streamline curvature that thesecondary vortex imparts on the primary vortex excites a centrifugal instability thatresults in longitudinal, counter-rotating vortices to form within the separation bubble.These destabilise the recirculation bubble and produce an unsteady 3D flow, whichdisturbs the separated shear layer. The shear layer reattachment line is found to become3D and unsteady due to the recirculation bubble unsteadiness. This adds additionalcomplexity to the typical 2D recompression process assumed for nominally 2D SWBLIflows. The 3D unsteady recompression process results in the reattachment heat fluxesincreasing by over 200% at some instances in time.The intrinsic 3D unsteady SWBLI behaviour is shown to occur at an identical Reynoldsnumber to when a secondary vortex arises within simple 2D CFD simulations. This resultoffers considerable scope for these effects to be predicted without the need forexperimental data and their effects approximated through judicious use oftransition/turbulence models.
机译:这项工作详细说明了新型激波/边界层相互作用(SWBLI)行为的存在,该行为表现出与假定2D稳态层流,过渡或湍流的先前模型明显不同的动力学特性。已显示出固有的3D非稳态层流为了在这些气泡中建立和控制这种形成的过程,已经使用高保真,不稳定,3D计算流体动力学(CFD)模拟进行了详细研究。与2D模拟和理论相比,这些层效应已显示出在主要再循环涡旋的连接点产生大量的额外热量。已经证明,这种额外加热的幅度是2Dlaminar模拟的两倍,并且为文献中提出的关于这些SWBLI湍流过渡的论点提供了另一种结论。结果详细说明,在初级涡旋触发器下方形成了次级涡旋。 3D不稳定SWBLI流的开始。次级涡流在初级涡流上产生的流线曲率激发了离心失稳,该离心失稳导致纵向,反向旋转的涡流在分离泡内形成,这使再循环泡不稳定并产生不​​稳定的3D流动,从而扰乱了分离的剪切层。由于循环气泡的不稳定,发现剪切层的重新附着线变成3D且不稳定。这为名义上的2D SWBLIflow假定的典型2D再压缩过程增加了额外的复杂性。 3D非稳定再压缩过程在某些情况下会导致重新附着的热通量增加200%以上.3D非稳定SWBLI固有行为表现为与简单2D CFD模拟中出现次级涡旋的雷诺数相同。该结果为无需进行实验数据即可预测这些效应提供了相当大的范围,并且可以通过明智地使用过渡/湍流模型来近似估算其效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号