首页> 外文OA文献 >1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes
【2h】

1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes

机译:可以从未污染的土壤中富集降解1,4-二恶烷的财团:分枝杆菌和可溶性二铁单加氧酶基因的流行

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two bacterial consortia were enriched from uncontaminated soil by virtue of their ability to grow on 1,4-dioxane (dioxane) as a sole carbon and energy source. Their specific dioxane degradation rates at 30°C, pH = 7 (i.e. 5.7 to 7.1 g-dioxane per g-protein per day) were comparable to those of two dioxane-metabolizing archetypes: Pseudonocardia dioxanivoransCB1190 and Mycobacterium dioxanotrophicusPH-06. Based on 16S rRNA sequencing, Mycobacterium was the dominant genus. Acetylene inhibition tests suggest that dioxane degradation was mediated by monooxygenases. However, qPCR analyses targeting the tetrahydrofuran/dioxane monooxygenase gene (thmA/dxmA) (which is, to date, the only sequenced dioxane monooxygenase gene) were negative, indicating that other (as yet unknown) catabolic gene(s) were responsible. DNA sequence analyses also showed threefold to sevenfold enrichment of group 5 and group 6 soluble di-iron monooxygenase (SDIMO) genes relative to the original soil samples. Whereas biodegradation of trace levels of dioxane is a common challenge at contaminated sites, both consortia degraded dioxane at low initial concentrations (300 μg l−1) below detectable levels (5 μg l−1) in bioaugmented microcosms prepared with impacted groundwater. Overall, this work shows that dioxane-degrading bacteria (and the associated natural attenuation potential) exist even in some uncontaminated soils, and may be enriched to broaden bioaugmentation options for sites experiencing insufficient dioxane catabolic capacity.
机译:由于它们能够在1,4-二恶烷(dioxane)作为唯一碳和能源的基础上生长,因此从未受污染的土壤中富集了两个细菌群落。它们在30°C,pH = 7(即每克蛋白每天5.7至7.1 g-二恶烷)的特定二恶烷降解速率可与两种代谢二恶烷的原型(假性心原二恶草酸CB1190和分枝杆菌二氧氮营养菌PH-06)相比。基于16S rRNA测序,分枝杆菌是优势属。乙炔抑制试验表明二恶烷的降解是由单加氧酶介导的。然而,针对四氢呋喃/二恶烷单加氧酶基因(thmA / dxmA)(迄今为止,是唯一测序的二恶烷单加氧酶基因)的qPCR分析为阴性,表明其他(至今未知)分解代谢基因起作用。 DNA序列分析还显示,相对于原始土壤样品,第5组和第6组可溶性二铁单加氧酶(SDIMO)基因的富集程度达到了三倍至七倍。痕量二恶烷的生物降解在受污染的地点是一个普遍的挑战,但两个财团都以低于初始浓度(300μg-1)的低浓度降解了二恶烷,该初始浓度低于用受影响的地下水制备的生物强化微观世界中可检测的水平(5μg-1)。总的来说,这项工作表明,即使在一些未受污染的土壤中,降解二恶烷的细菌(及其相关的自然衰减潜能)也存在,并且可能会被富集,以扩大二恶烷分解代谢能力不足的地点的生物强化选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号