首页> 外文OA文献 >Efficient alternating gradient-type algorithms for the approximate non-negative matrix factorization problem
【2h】

Efficient alternating gradient-type algorithms for the approximate non-negative matrix factorization problem

机译:近似非负矩阵分解问题的高效交替梯度类型算法

摘要

The approximate non-negative matrix factorization problem (ANMF) seeks to interpret a given set of non-negative data vectors, where the non-negativity is physically meaningful, through the extraction of a sufficiently small set of non-negative "features". Each data vector is then approximated by a non-negative composition of the extracted features. Mathematically, this process is equivalent to approximating a non-negative matrix A by the product of two non-negative matrices, i.e. A ≈ WH, where W ∈ realsm xp and H ∈ reals pxn, and where p is typically chosen to be significantly smaller than m and n.A standard approach for solving the ANMF problem is to use a alternating gradient-type algorithm that keeps the iterates strictly positive. Lee and Seung have proposed what is arguably the most popular of these alternating gradient approaches. In this study we propose several variations of this particular Lee and Seung algorithm with notably improved performance. One of the proposed algorithms optimizes the step-length parameter to achieve greater reduction in the objective function, while another uses different weights derived from the first order necessary conditions of the ANMF problem. The latter has exhibited better empirical performance than the former, while both perform better in practice than the original Lee and Seung algorithm.Theoretical questions concerning the convergence of these feasible alternating gradient-type algorithms have remained unresolved. Hence, from an optimization point of view, these approaches may be seen as unsatisfactory. Our research has contributed to solving these theoretical questions by proving that a class of these algorithms will converge to a continuum, and in specific cases, to a KKT point. These convergence results are applicable to multiple variations of the popular Lee and Seung algorithm.A low-rank Singular Value Decomposition (SVD) of a given matrix A is an optimal approximation under the Frobenius norm whose fundamental subspaces are most relevant within the given measure. In this study we utilize these subspaces to produce a compact reformulation of the ANMF problem to a lower dimensional optimization problem. We introduce an alternating algorithmic approach for this reformulation that is extremely efficient and competitive when producing a low rank ANMF.
机译:近似非负矩阵分解问题(ANMF)试图通过提取足够少的一组非负“特征”来解释给定的一组非负数据向量,其中非负在物理上是有意义的。然后,通过提取特征的非负组合来近似每个数据向量。在数学上,此过程等效于通过两个非负矩阵(即A≈ 2)的乘积来近似非负矩阵A。 WH,其中W∈realsm xp和H∈reals pxn,并且p通常选择为显着小于m和n。解决ANMF问题的标准方法是使用交替梯度类型算法,使迭代严格严格为正。 Lee和Seung提出了这些交替梯度方法中最流行的方法。在这项研究中,我们提出了这种特定的Lee and Seung算法的几种变体,并显着提高了性能。提出的一种算法优化了步长参数,以实现目标函数的更大降低,而另一种算法则使用了从ANMF问题的一阶必要条件得出的不同权重。后者表现出比前者更好的经验性能,而两者在实践中都比原始的Lee和Seung算法表现更好。关于这些可行的交替梯度类型算法的收敛性的理论问题仍未解决。因此,从优化的角度来看,这些方法可能不令人满意。我们的研究通过证明这些算法的一类将收敛到一个连续统,并且在特定情况下会收敛到KKT点,为解决这些理论问题做出了贡献。这些收敛结果适用于流行的Lee和Seung算法的多种变体。给定矩阵A的低秩奇异值分解(SVD)在Frobenius范数下是最优近似,其基本子空间在给定度量内最相关。在这项研究中,我们利用这些子空间将ANMF问题的压缩重新公式化为较低维的优化问题。我们为这种重新引入引入了一种交替算法方法,该方法在产生低秩ANMF时非常有效且具有竞争力。

著录项

  • 作者

    Gonzalez Edward F.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号