首页> 外文OA文献 >Compact support wavelet representations for solution of quantum and electromagnetic equations: Eigenvalues and dynamics
【2h】

Compact support wavelet representations for solution of quantum and electromagnetic equations: Eigenvalues and dynamics

机译:量子和电磁方程解的紧凑支持小波表示:特征值和动力学

摘要

Wavelet-based algorithms are developed for solution of quantum and electromagnetic differential equations. Wavelets offer orthonormal localized bases with built-in multiscale properties for the representation of functions, differential operators, and multiplicative operators. The work described here is part of a series of tools for use in the ultimate goal of general, efficient, accurate and automated wavelet-based algorithms for solution of differential equations.The most recent work, and the focus here, is the elimination of operator matrices in wavelet bases. For molecular quantum eigenvalue and dynamics calculations in multiple dimensions, it is the coupled potential energy matrices that generally dominate storage requirements. A Coefficient Product Approximation (CPA) for the potential operator and wave function wavelet expansions dispenses with the matrix, reducing storage and coding complexity. New developments are required, however. It is determined that the CPA is most accurate for specific choices of wavelet families, and these are given here. They have relatively low approximation order (number of vanishing wavelet function moments), which would ordinarily be thought to compromise both wavelet reconstruction and differentiation accuracy. Higher-order convolutional coefficient filters are determined that overcome both apparent problems. The result is a practical wavelet method where the effect of applying the Hamiltonian matrix to a coefficient vector can be calculated accurately without constructing the matrix.The long-familiar Lanczos propagation algorithm, wherein one constructs and diagonalizes a symmetric tridiagonal matrix, uses both eigenvalues and eigenvectors. We show here that time-reversal-invariance for Hermitian Hamiltonians allows a new algorithm that avoids the usual need to keep a number Lanczos vectors around. The resulting Conjugate Symmetric Lanczos (CSL) method, which will apply for wavelets or other choices of basis or grid discretization, is simultaneously low-operation-count and low-storage. A modified CSL algorithm is used for solution of Maxwell's time-domain equations in Hamiltonian form for non-lossy media. The matrix-free algorithm is expected to complement previous work and to decrease both storage and computational overhead. It is expected- that near-field electromagnetic solutions around nanoparticles will benefit from these wavelet-based tools. Such systems are of importance in plasmon-enhanced spectroscopies.
机译:为解决量子和电磁微分方程,开发了基于小波的算法。小波提供具有内置多尺度属性的正交局部基,用于表示函数,微分算子和乘法算子。这里描述的工作是一系列工具的一部分,该工具的使用最终目的是基于通用,高效,准确和自动的基于小波的微分方程解算法。小波基的矩​​阵对于多维的分子量子特征值和动力学计算,通常由耦合势能矩阵决定存储需求。用于潜在算子和波函数小波展开的系数乘积近似(CPA)消除了矩阵,从而降低了存储和编码的复杂性。但是,需要新的发展。确定CPA对于小波族的特定选择最准确,这些在此处给出。它们具有相对较低的近似阶数(消失的小波函数矩数),通常认为这会损害小波重构和微分精度。确定克服了两个明显问题的高阶卷积系数滤波器。结果是一种实用的小波方法,可以在不构造矩阵的情况下准确计算将汉密尔顿矩阵应用于系数向量的效果。熟悉的Lanczos传播算法是一种构造对称对角线矩阵并将其对角化的方法,它既使用特征值又使用特征向量。我们在这里表明,埃尔米特哈密顿量的时间反转不变性允许一种新的算法,该算法避免了通常需要保持多个Lanczos向量周围的情况。所得的共轭对称Lanczos(CSL)方法适用于小波或基数或网格离散化的其他选择,同时具有低运算量和低存储量的优点。改进的CSL算法用于求解非损耗介质的哈密顿形式的麦克斯韦时域方程。无矩阵算法有望补充以前的工作,并减少存储和计算开销。预计-围绕纳米粒子的近场电磁解决方案将从这些基于小波的工具中受益。这样的系统在等离激元增强光谱学中很重要。

著录项

  • 作者

    Acevedo Ramiro Jr;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号