首页> 外文OA文献 >Modelling microstructure evolution during equal channel angular pressing of magnesium alloys using cellular automata finite element method
【2h】

Modelling microstructure evolution during equal channel angular pressing of magnesium alloys using cellular automata finite element method

机译:用元胞自动机有限元法模拟镁合金等通道角挤压过程中的组织演变。

摘要

Equal channel angular pressing (ECAP) is one of the most popular methods of obtaining ultrafine grained (UFG) metals. However, only relatively short billets can be processed by ECAP due to force limitation. A solution to this problem could be recently developed incremental variant of the process, so called I-ECAP. Since I-ECAP can deal with continuous billets, it can be widely used in industrial practice. Recently, many researchers have put an effort to obtain UFG magnesium alloys which, due to their low density, are very promising materials for weight and energy saving applications. It was reported that microstructure refinement during ECAP is controlled by dynamic recrystallization and the final mean grain size is dependent mainly on processing temperature. In this work, cellular automata finite element (CAFE) method was used to investigate microstructure evolution during four passes of ECAP and its incremental variant I-ECAP. The cellular automata space dynamics is determined by transition rules, whose parameters are strain, strain rate and temperature obtained from FE simulation. An internal state variable model describes total dislocation density evolution and transfers this information to the CA space. The developed CAFE model calculates the mean grain size and generates a digital microstructure prediction after processing, which could be useful to estimate mechanical properties of the produced UFG metal. Fitting and verification of the model was done using the experimental results obtained from I-ECAP of an AZ31B magnesium alloy and the data derived from literature. The CAFE simulation results were verified for the temperature range 200-250 °C and strain rate 0.01-0.5 s-1; good agreement with experimental data was achieved.
机译:等通道角挤压(ECAP)是获得超细晶粒(UFG)金属的最流行方法之一。但是,由于受力限制,ECAP只能加工相对较短的钢坯。最近可以开发该过程的增量变体来解决此问题,即所谓的I-ECAP。由于I-ECAP可以处理连续坯料,因此可以在工业实践中广泛使用。最近,许多研究人员已努力获得UFG镁合金,由于其密度低,在重量和节能应用方面是非常有前途的材料。据报道,ECAP期间的组织细化是通过动态再结晶来控制的,最终的平均晶粒尺寸主要取决于加工温度。在这项工作中,使用细胞自动机有限元(CAFE)方法研究了ECAP及其增量变体I-ECAP在四次通过期间的微观结构演变。元胞自动机空间动力学是由过渡规则决定的,过渡规则的参数是从有限元模拟获得的应变,应变速率和温度。内部状态变量模型描述了总位错密度的演变并将此信息传递到CA空间。建立的CAFE模型计算平均晶粒尺寸,并在加工后生成数字化的微观结构预测,这可能对估算所生产的UFG金属的机械性能有用。使用从AZ31B镁合金的I-ECAP获得的实验结果以及来自文献的数据对模型进行拟合和验证。在200-250°C的温度范围和0.01-0.5 s-1的应变速率下验证了CAFE仿真结果;与实验数据取得了很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号