首页> 外文OA文献 >A Geometric Framework for Analyzing the Performance of Multiple-Antenna Systems under Finite-Rate Feedback
【2h】

A Geometric Framework for Analyzing the Performance of Multiple-Antenna Systems under Finite-Rate Feedback

机译:有限速率反馈下分析多天线系统性能的几何框架

摘要

We study the performance of multiple-antenna systems under finite-rate feedback of some function of the current channel realization from a channel-aware receiver to the transmitter. Our analysis is based on a novel geometric paradigm whereby the feedback information is modeled as a source distributed over a Riemannian manifold. While the right singular vectors of the channel matrix and the subspace spanned by them are located on the traditional Stiefel and Grassmann surfaces, the optimal input covariance matrix is located on a new manifold of positive semi-definite matrices - specified by rank and trace constraints - called the Pn manifold. The geometry of these three manifolds is studied in detail; in particular, the precise series expansion for the volume of geodesic balls over the Grassmann and Stiefel manifolds is obtained. Using these geometric results, the distortion incurred in quantizing sources using either a sphere-packing or a random code over an arbitrary manifold is quantified. Perturbative expansions are used to evaluate the susceptibility of the ergodic information rate to the quality of feedback information, and thereby to obtain the tradeoff of the achievable rate with the number of feedback bits employed. For a given system strategy, the gap between the achievable rates in the infinite and finite-rate feedback cases is shown to be $O(2^{-rac{2N_f}{N}})$ for Grassmann feedback and $O(2^{-rac{N_f}{N}})$ for other cases, where $N$ is the dimension of the manifold used for quantization and $N_f$ is the number of bits used by the receiver per block for feedback. The geometric framework developed enables the results to hold for arbitrary distributions of the channel matrix and extends to all covariance computation strategies including, waterfilling in the short-term/long-term power constraint case, antenna selection and other rank-limited scenarios that could not be analyzed using previous probabilistic approaches.
机译:我们研究了从当前信道实现的接收器到发射器的当前信道实现功能的有限速率反馈下的多天线系统性能。我们的分析基于一种新颖的几何范式,其中反馈信息被建模为分布在黎曼流形上的源。通道矩阵及其子空间的右奇异矢量位于传统的Stiefel和Grassmann曲面上,而最佳输入协方差矩阵位于正半定矩阵的新流形上(由秩和迹线约束指定)称为Pn流形。详细研究了这三个歧管的几何形状。特别是,获得了格拉斯曼和斯蒂芬流形上测地球体积的精确级数展开。使用这些几何结果,可以量化在任意流形上使用球体堆积或随机代码对量化源产生的失真。使用摄动展开来评估遍历信息速率对反馈信息质量的敏感性,从而获得可达到速率与所采用反馈位数之间的权衡。对于给定的系统策略,对于格拉斯曼反馈,无限和有限速率反馈情况下可达到的速率之间的差距显示为$ O(2 ^ {- frac {2N_f} {N}})$和$ O(在其他情况下为2 ^ {- frac {N_f} {N}})$,其中$ N $是用于量化的流形的维数,$ N_f $是接收器每个块用于反馈的位数。所开发的几何框架使结果能够保持信道矩阵的任意分布,并扩展到所有协方差计算策略,包括短期/长期功率约束情况下的注水,天线选择和其他等级受限的情况使用以前的概率方法进行分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号