首页> 外文OA文献 >Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations
【2h】

Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations

机译:在拉伸,成型和翻边操作中展现多相钢的机械和微观结构性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanical performance of Dual Phase (DP) and Complex Phase (CP) steels was investigated by SEM analysis, tensile testing, Forming Limit Curve investigation and flange formability testing. The alloys of interest were Dual Phase (DP) untempered, Dual Phase (DP) tempered and Complex Phase (CP) steels. Phase content analysis showed that the distribution of the ferrite and martensite phases was the same for the two DP alloys, but the grain size and condition (tempered/untempered) for the martensite islands was much different in the two alloys. In the tempered DP steel, the smaller grain size for the martensite and the tempering process resulted in increased elongation, more formability and ability to form a flange (flangeability). In CP steels the soft ferrite phase is replaced by harder bainite, yielding a bainitic-martensitic microstructure. Bainite reduced the total elongation of the alloy during tensile testing, reduced the formability (especially under plane strain conditions) of the alloy but improved the flangeability of the alloy. Under flanging conditions, CP steels deformed to higher strains, at tighter radii with minimum springback. Microstructural inspections at the outer radius of the flanged specimens revealed that in CP steels bainite deforms similarly to martensite, therefore the strain partitioning is smaller in CP steels in comparison to DP steels. Plastic deformation in CP steels upon flanging occurs with the formation of strong slip bands in both martensite and bainite. In contrast, the martensite and ferrite grains in DP steels deform quite differently leading to strong strain localisations. Void nucleation and cracking occurred at the martensite islands or within the soft ferrite phase next to the martensite islands. In CP steels no voids or damage was observed within the matrix. A special case study was done with a thicker and stronger alloy, a Martensitic 1400 steel to reveal the flangeability limits for advanced high strength steels. Neither cracks nor damage were observed visually on the flanged specimens. However SEM observations at the outer radius of the flanged samples revealed significant void growth at inclusion sites and cracks nucleating within the matrix adjacent to the inclusions.udud
机译:通过SEM分析,拉伸试验,成形极限曲线研究和凸缘成形性试验研究了双相(DP)和复相(CP)钢的机械性能。感兴趣的合金是双相(DP)未回火,双相(DP)回火和复相(CP)钢。相含量分析表明,两种DP合金的铁素体相和马氏体相的分布相同,但两种合金中马氏体岛的晶粒尺寸和条件(回火/未回火)相差很大。在回火的DP钢中,马氏体和回火过程的晶粒尺寸较小,从而导致伸长率增加,成形性和形成凸缘的能力(凸缘性)提高。在CP钢中,较软的铁素体相被较硬的贝氏体代替,产生了贝氏体-马氏体的显微组织。贝氏体降低了拉伸试验期间合金的总伸长率,降低了合金的可成形性(特别是在平面应变条件下),但提高了合金的凸缘性。在翻边条件下,CP钢在较小的回弹半径下以较小的半径变形至较高的应变。法兰试样外半径的显微组织检查表明,在CP钢中,贝氏体的变形与马氏体相似,因此,与DP钢相比,CP钢的应变分配较小。 CP钢在翻边时发生塑性变形,并在马氏体和贝氏体中均形成强滑带。相反,DP钢中的马氏体和铁素体晶粒变形差异很大,从而导致强烈的应变局部化。空洞形核和开裂发生在马氏体岛上或在马氏体岛附近的软铁素体相内。在CP钢中,在基体中未观察到空隙或损坏。进行了一项特殊案例研究,使用了更厚,更坚固的合金(马氏体1400钢),以揭示先进高强度钢的凸缘性极限。在带凸缘的样品上肉眼都没有观察到裂纹和损坏。但是,在带凸缘的样品的外半径处的SEM观察表明,在夹杂物位置处有明显的空洞生长,并且裂纹在夹杂物附近的基体内成核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号