首页> 外文OA文献 >Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability
【2h】

Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

机译:建模和观测的低频气候变异的来源和影响

摘要

Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). udIn Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014).udIn Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limón) record indicates that precipitation variability in western Amazonia is ‘red’ (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly'‘white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region.udIn Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. udIn summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.
机译:在这里,我们使用仪器,古气候(代理)和最新的气候模型数据来分析气候变化,以更多地了解低频气候变化的来源和影响。对于气候变化的研究,包括对气候变化影响的发现和归因分析,了解在一年到一个世纪尺度上气候变化的驱动因素很重要。此外,正确地模拟变异性的来源和影响是模拟突变(Alley等,2003)和长期干旱(Seager等,2005; Pelletier和Turcotte,1997; Ault等,2014)的关键。 。 ud在附录A中,我们采用地球系统模型(GFDL-ESM2M)模拟来研究大西洋子午翻转环流(AMOC)减弱对美国热带气候的影响。 AMOC驱动局部和全球内部低频气候变化(Manabe和Stouffer,1995; Thornalley等,2009),并有助于控制热带雨带的位置(Zhang和Delworth,2005)。我们发现AMOC的严重减弱会导致中美洲和南美洲的大规模温度,降水和碳储量变化。我们的结果表明,仅AMOC强度未来可能发生的变化不足以导致亚马逊森林大规模倒退,但是这个关键的自然生态系统对干旱季节的长度和降雨时间敏感(Parsons等,2014)。 ud在附录B中,我们将秘鲁亚马逊地区降水的古气候记录与气候模型的降水变化进行了比较。古气候(Limón湖)记录表明,西部亚马逊地区的降水变化是“红色的”(即随时间尺度变化的增加)。相比之下,大多数最新的气候模型都表明该地区的降水变化率几乎是“白色”的(即,不同时间尺度的变化率均相同)。方差谱整体结构中的这种古模型差异对多年干旱的可能性具有重要影响。我们的湖泊记录表明,西部亚马逊河地区存在多年甚至十年干旱的重大背景威胁,而气候模型模拟表明,大多数干旱可能持续不超过一到三年。这些发现表明,气候模型可能低估了这个重要地区未来干旱加剧的风险。 ud在附录C中,我们将对气候变异性的分析扩展到了南美以外。我们使用观测资料,受约束的热带古气候和地球系统模型数据来检查跨年际到世纪频率的气候谱的整体形状。我们发现观测和模型之间存在一个普遍的共识,即在热带以外的全球大多数地区,温度变化随时间的推移而增加。但是,与古气候记录相比,气候模型在热带地区产生的低频变化太少(例如Laepple和Huybers,2014)。当我们将模拟的气候光谱的形状与简单的自回归过程的光谱进行比较时,我们发现热带地区许多模拟的表面温度变化可以用天气噪声的海洋平滑来解释。重要的是,模拟的降水在全球大部分地区往往类似于白噪声。相比之下,全球各种类型的古气候记录表明,与简单的自回归过程或白噪声过程相比,温度和降水的变化都应经历更多的低频变化。 ud总而言之,最新的气候模型会产生一定程度的动态驱动的低频气候变异性,尤其是在高纬度地区。但是,最新的气候模型,观测资料和古气候数据为我们提供了背景气候系统及其相关风险的截然不同的图片。这项研究对于改善我们在未来几个世纪进入一个更温暖(通常更干燥)的世界时模拟极端气候的方式具有重要意义。如果气候模型低估了低频变异性,那么我们将低估未来突然变化和极端事件(例如大干旱)的风险。

著录项

  • 作者

    Parsons Luke Alexander;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号