首页> 外文OA文献 >Leaf Volatile Emissions Structure Tree Community Assembly and Mediate Climate Feedbacks in Tropical Forests
【2h】

Leaf Volatile Emissions Structure Tree Community Assembly and Mediate Climate Feedbacks in Tropical Forests

机译:叶片挥发性排放物结构树群落的组装和调解热带森林的气候反馈

摘要

The biochemistry of leaves merges the fates of trees and the atmosphere. Leaf primary metabolism cycles carbon and indirectly drives atmospheric circulation via the latent heat of transpiration. Tropical forests contain half of global forest carbon, and actively cycle carbon and energy year round, making them critical components of the coupled biosphere-climate system. Climate change threatens tropical forests with rising temperatures and increasing variability of precipitation. Their response will influence future biodiversity as well as the fate of the climate. Understanding the physiological attributes that define tropical tree responses and feedbacks to climate is a current research priority. The emission of isoprene gas from plant leaves has been demonstrated to enhance leaf tolerance to high temperatures and drought. Isoprene is a volatile secondary metabolite produced in the chloroplast by approximately one-third of plant species. While the benefits of isoprene are supported by extensive laboratory and greenhouse-based research, work has only begun to explore how the trait is integrated in plant functional strategies. Whether isoprene influences differential species performance and survival across environments has yet to be tested. An impediment to filling this clear ecological research gap has been a lack of instrumentation capable of quantifying isoprene emissions from leaves in remote field settings. The first study presented here tests the hypothesis that isoprene emission influences plant community assembly shifts across environmental gradients and through time in tropical forests. The capacity for a species to produce isoprene was associated with increased relative abundance at higher temperatures and following drought anomalies. A negative relationship with the length of seasonal drought suggests a trade-off between isoprene emission and other plant traits, such as deciduous leaf habit. The second study presents the development of a new instrument that is uniquely optimized for field-based ecological research on leaf volatiles. The new system, named PORCO (Photoionization of Organic Compounds), utilizes custom leaf cuvettes, precision light control, and an optimized commercial photoionization detector to achieve real-time detection of leaf emissions with detection limits better than 0.5 nmol m⁻² leaf s⁻¹. The third study utilizes PORCO to test hypotheses about the structuring of isoprene within plant functional strategies and across forest microenvironments in an eastern Amazonian evergreen tropical forest. The results support the role of isoprene—and potentially other volatile isoprenoids—in mitigating effects of intermittent sun exposure in the sub-canopy. Emissions are structured in a complex, multivariate manner that depends on taxonomy, leaf and wood characteristics, tree height, and light environment. The results from this dissertation work demonstrate that isoprene emission from leaves affects plant responses to climate at ecologically relevant scales. Isoprene influences climate not only by its effect on primary leaf functions, but also by directly altering atmospheric chemistry, and contributing to aerosol and cloud properties. Understanding isoprene's role in forest responses to increasing temperatures and drought will help to predict the feedbacks between forest ecosystems and climatic change.
机译:叶子的生物化学融合了树木和大气的命运。叶片的主要代谢循环碳,并通过蒸腾潜热间接驱动大气循环。热带森林占全球森林碳的一半,并全年积极地循环碳和能源,使其成为生物圈-气候系统耦合的关键组成部分。气候变化通过升高温度和增加降水变化来威胁热带森林。他们的反应将影响未来的生物多样性以及气候的命运。了解定义热带树木对气候的反应和反馈的生理属性是当前研究的重点。已证明从植物叶片中排放异戊二烯气体可增强叶片对高温和干旱的耐受性。异戊二烯是叶绿体中约三分之一的植物物种产生的挥发性次生代谢产物。尽管异戊二烯的益处得到了广泛的实验室和温室研究的支持,但工作才刚刚开始探索如何将该特性整合到植物功能策略中。异戊二烯是否会影响不同物种的性能和在整个环境中的生存尚待检验。填补这一明显的生态研究空白的障碍是缺乏能够量化偏远田地叶片中异戊二烯排放量的仪器。此处提出的第一个研究检验了以下假设:异戊二烯排放影响植物群落组装跨环境梯度以及在热带森林中随时间变化。一个物种产生异戊二烯的能力与在较高温度和干旱异常之后相对丰度的增加有关。与季节性干旱时间的负相关表明异戊二烯的排放与其他植物性状(如落叶的叶习性)之间的权衡。第二项研究介绍了一种新仪器的开发,该仪器针对田间叶挥发物的生态学研究进行了独特的优化。新系统名为PORCO(有机化合物的光电离),它利用定制的比色杯,精确的光控制和优化的商用光电离检测器来实现对叶片排放的实时检测,检测极限优于0.5 nmolm²²叶片s⁻。 ¹。第三项研究利用PORCO来检验关于异戊二烯在植物功能策略内以及东部亚马逊常绿热带森林中森林微环境之间结构的假设。结果支持异戊二烯和潜在的其他挥发性类异戊二烯在减轻子冠层间间歇性阳光照射的影响中的作用。排放以复杂,多元的方式进行结构化,具体取决于分类法,叶片和木材的特性,树木的高度以及光照环境。这项研究工作的结果表明,叶片的异戊二烯排放会在生态学上影响植物对气候的反应。异戊二烯不仅会影响气候对主要叶片功能的影响,而且会直接改变大气的化学性质并影响气溶胶和云的性质,从而影响气候。了解异戊二烯在森林应对不断升高的温度和干旱中的作用,将有助于预测森林生态系统和气候变化之间的反馈。

著录项

  • 作者

    Taylor Tyeen Colligan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号