首页> 外文OA文献 >Long-Term Stabilization of Arsenic-Bearing Solid Residuals under Landfill Conditions
【2h】

Long-Term Stabilization of Arsenic-Bearing Solid Residuals under Landfill Conditions

机译:填埋条件下含砷固体残渣的长期稳定化

摘要

The maximum contaminant level (MCL) for arsenic in drinking water was reduced to 10 parts per billion in 2006 by the USEPA. As a result, approximately 10,000 tons of arsenic-bearing residuals (ABSRs) are estimated to be generated every year from water treatment processes. It has also been established that the standard Toxicity Characteristic Leaching Procedure (TCLP), underestimates arsenic leaching from ABSRs, particularly under mature, mixed solid waste landfill conditions. This makes it critical to investigate stabilization technologies that would ensure long-term stability of arsenic residuals after disposal. Arsenic is ubiquitously associated with iron oxides in natural environments as well as water treatment residuals. Hence, knowledge of iron oxide transformations under landfill conditions is critical to understanding the fate and mobility of the associated arsenic. In this work, the effect of high local Fe(II) concentrations on ferrihydrite transformation pathways was studied. Magnetite was the sole transformation product in the presence of high local Fe(II) concentrations. In the absence of high Fe(II) concentrations, goethite was the major transformation product along with minor quantities of magnetite. These results have implications for arsenic mobility from ABSRs since goethite and magnetite have different arsenic sorption capacities and mechanisms. Two technologies were investigated for the stabilization of ABSRs - Arsenic Crystallization Technology (ACT) and Microencapsulation. The strategy for ACT was to convert ABSRs into minerals with a high arsenic capacity and long-term stability under landfill conditions. Scorodite, arsenate hydroxyapatites, ferrous arsenate, arsenated schwertmannite, tooeleite and silica-amended tooeleite, were synthesized and evaluated for their potential to serve as arsenic sinks using TCLP and a simulated landfill leachate test. Ferrous arsenate type solids and arsenated schwertmannite showed most promise in terms of low arsenic leachability and favorable synthesis conditions. Microencapsulation involved coating arsenic-loaded ferrihydrite with a mineral having high stability under landfill conditions. Based on results from a previous study, vivianite was investigated as a potential encapsulant for ABSRs. A modified version of the TCLP was used to evaluate the effectiveness of microencapsulation. Although vivianite did not prove to be a promising encapsulant, our efforts offer useful insights for the development of a successful microencapsulation technology for arsenic stabilization.
机译:美国环境保护局(USEPA)于2006年将饮用水中砷的最大污染物水平(MCL)降至十亿分之十。结果,估计每年在水处理过程中会产生约10,000吨含砷残留物(ABSR)。还已经确定,标准的毒性特征浸出程序(TCLP)会低估ABSR中的砷浸出,特别是在成熟的混合固体废物填埋场条件下。因此,至关重要的是要研究稳定化技术,以确保处理后砷残留物的长期稳定性。砷与自然环境中的氧化铁以及水处理残留物无处不在。因此,了解垃圾填埋场条件下的氧化铁转化对于了解相关砷的命运和迁移性至关重要。在这项工作中,研究了高局部Fe(II)浓度对水铁矿转化途径的影响。在高局部Fe(II)浓度下,磁铁矿是唯一的转变产物。在没有高Fe(II)浓度的情况下,针铁矿和少量磁铁矿是主要的转变产物。由于针铁矿和磁铁矿具有不同的砷吸附能力和机理,因此这些结果对ABSR的砷迁移具有影响。研究了两种用于稳定ABSR的技术-砷结晶技术(ACT)和微囊化。 ACT的策略是将ABSRs转化为具有高砷容量和在填埋条件下具有长期稳定性的矿物。合成了臭葱石,砷酸羟基磷灰石,砷酸亚铁,砷化schwertmannite,钙锰矿和二氧化硅改性钙钛矿,并使用TCLP和模拟的垃圾渗滤液试验评估了它们作为砷沉池的潜力。从砷的低浸出率和良好的合成条件来看,砷酸亚铁型固体和砷化schwertmannite最具前景。微囊化涉及用在掩埋条件下具有高稳定性的矿物涂覆负载砷的三水铁矿。根据先前研究的结果,研究了Vivianite作为ABSR的潜在封装剂。 TCLP的修改版本用于评估微囊化的有效性。尽管未证实Vivianite是一种有前途的密封剂,但我们的努力为开发成功的砷稳定微囊化技术提供了有益的见识。

著录项

  • 作者

    Raghav Madhumitha;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-31 15:19:43

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号