首页> 外文OA文献 >The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(iv) and uranium(iv) alkyls
【2h】

The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(iv) and uranium(iv) alkyls

机译:5f轨道参与在三酰胺胺or(iv)和铀(iv)烷基的σ键易位反应趋势的意外反转中的作用

摘要

We report on the role of 5f-orbital participation in the unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(IV) and uranium(IV) alkyls. Reaction of KCH2Ph with [U(TrenTIPS)(I)] [2a, TrenTIPS = N(CH2CH2NSiPri3)33−] gave the cyclometallate [U{N(CH2CH2NSiPri3)2(CH2CH2NSiPri2C[H]MeCH2)}] (3a) with the intermediate benzyl complex not observable. In contrast, when [Th(TrenTIPS)(I)] (2b) was treated with KCH2Ph, [Th(TrenTIPS)(CH2Ph)] (4) was isolated; which is notable as Tren N-silylalkyl metal alkyls tend to spontaneously cyclometallate. Thermolysis of 4 results in the extrusion of toluene and formation of the cyclometallate [Th{N(CH2CH2NSiPri3)2(CH2CH2NSiPri2C[H]MeCH2)}] (3b). This reactivity is the reverse of what would be predicted. Since the bonding of thorium is mainly electrostatic it would be predicted to undergo facile cyclometallation, whereas the more covalent uranium system might be expected to form an isolable benzyl intermediate. The thermolysis of 4 follows well-defined first order kinetics with an activation energy of 22.3 ± 0.1 kcal mol−1, and Eyring analyses yields ΔH‡ = 21.7 ± 3.6 kcal mol−1 and ΔS‡ = −10.5 ± 3.1 cal K−1 mol−1, which is consistent with a σ-bond metathesis reaction. Computational examination of the reaction profile shows that the inversion of the reactivity trend can be attributed to the greater f-orbital participation of the bonding for uranium facilitating the σ-bond metathesis transition state whereas for thorium the transition state is more ionic resulting in an isolable benzyl complex. The activation barriers are computed to be 19.0 and 22.2 kcal mol−1 for the uranium and thorium cases, respectively, and the latter agrees excellently with the experimental value. Reductive decomposition of “[U(TrenTIPS)(CH2Ph)]” to [U(TrenTIPS)] and bibenzyl followed by cyclometallation to give 3a with elimination of dihydrogen was found to be endergonic by 4 kcal mol−1 which rules out a redox-based cyclometallation route for uranium.
机译:我们报告了5f轨道参与三酰胺胺do(IV)和铀(IV)烷基的σ键复分解反应趋势的意外反转中的作用。 KCH2Ph与[U(TrenTIPS)(I)] [2a,TrenTIPS = N(CH2CH2NSiPri3)33-]反应得到环金属化物[U {N(CH2CH2NSiPri3)2(CH2CH2NSiPri2C [H] MeCH2)}](3a)与不可观察到中间体苄基配合物。相反,当用KCH2Ph处理[Th(TrenTIPS)(I)](2b)时,分离出[Th(TrenTIPS)(CH2Ph)](4);这是值得注意的,因为N-甲硅烷基烷基金属烷基倾向于自发地环金属化。 4的热解导致甲苯的挤出和环金属盐的形成[Th {N(CH2CH2NSiPri3)2(CH2CH2NSiPri2C [H] MeCH2)}](3b)。这种反应性与预期的相反。由于or的键主要是静电键合,因此可以预测它会进行环金属化反应,而更共价的铀系统可能会形成可分离的苄基中间体。 4的热分解遵循定义明确的一阶动力学,其活化能为22.3±0.1 kcal mol-1,而Eyring分析得出ΔH‡= 21.7±3.6 kcal mol-1和ΔS‡= -10.5±3.1 cal K-1 mol-1,与σ键复分解反应一致。对反应曲线的计算检验表明,反应趋势的反转可归因于铀键的更大的f轨道参与,从而促进了σ键易位的过渡态,而对于th,过渡态更具离子性,从而可分离苄基配合物。铀和th的活化势垒分别为19.0 kcal mol-1和22.2 kcal mol-1,后者与实验值非常吻合。发现“ [U(TrenTIPS)(CH2Ph)]”还原分解为[U(TrenTIPS)]和联苄,然后进行环金属化以生成3a并消除二氢,这是通过4 kcal mol-1进行的对正电子,这排除了氧化还原-铀的基于环金属化的路线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号