首页> 外文OA文献 >High coercitivity carbon embedded L10-FePt ferromagnetic nanoparticles
【2h】

High coercitivity carbon embedded L10-FePt ferromagnetic nanoparticles

机译:高矫顽力碳嵌入L10-FePt铁磁纳米粒子

摘要

Stoichiometric FePt nanoparticles in the tetragonal L10 phase, (Ku = 6.6?107 erg/cm3) are one of the leading candidates for next generation high-density recording media, allowing theoretical grain stability down to 3nm [1]. As-synthesized FePt nanoparticles produced by the conventional soft chemical route (polyol process) [2,3] shows disordered face centered cubic (fcc) structure with low Ku and superparamagnetic behavior at RT. The ordered L10 tetragonal structure is usually obtained by post-annealing in a reducing environment [4,5] giving rise to particle aggregation produced by sintering that affects significantly both the final particle size and the polidispersity. A preliminary work we performed pointed out that a direct synthesis of ferromagnetic particles, based on the decomposition of Fe(acac)3 and Pt(acac)2 in reducing solvent and inert atmosphere, is made possible by the increase of the reaction temperature at 290-330?C obtained by the use of Triton X-100 as solvent and polyvinylpyrrolidone (PVP) as protective agent. The resulting nanoparticles are ferromagnetic at RT with coercitive field (Hc) ranging from 0.4 to 1.0 KOe depending on the synthesis temperature. However, as evidenced by TEM analyses, they are magnetically aggregate and, for synthesis temperatures above 300?C, embedded in an amorphous matrix produced by partial decomposition of the solvent. These observations suggested us a novel approach to the synthesis of non-aggregate ferromagnetic nanoparticles. The basic idea is to block the nanoparticles in a rigid matrix, during the synthesis, before they become ferromagnetic, to prevent magnetic aggregation. Using PEG-600 as solvent and quickly raising the temperature above 300?C cause the polyol to condense in flakes. The rapid heating, joined to the increased viscosity, limits the diffusion of the nutrient phase to the growing nuclei, resulting in monodisperse nanoparticles, with a typical size ranging around 5nm (determined by XRD and TEM), randomly dispersed in the condensed matrix. In agreement with the XRD analysis, pointing out a disordered fcc structure, the magnetic measurements show at RT a superparamagnetic behaviour of the as-grown particles, with a blocking temperature TB of 60K and large distribution of energy barriers. The phase transformation to the ferromagnetic ordered tetragonal L10 structure is achieved by thermal annealing in dynamic high vacuum; the annealing transforms the organic matrix into amorphous carbon that preserves the original nanoparticle size and prevents the aggregation up to 1000?C, where it transforms into pyrolitic graphite. XRD shows the appearing of the L10 diffraction peaks after a 1 hour treatment at 650? and an almost complete phase transition after 4hours at the same temperature, where a coercitive field (Hc) of 2,5kOe at RT and 13kOe at 5K is detected. Annealing at higher temperatures, even if results in a further enhancement of the structural properties, gives rise to complex behaviour of the hysteresis, whose origin is still under investigation.
机译:方形L10相的化学计量FePt纳米颗粒(Ku = 6.6?107 erg / cm3)是下一代高密度记录介质的主要候选材料之一,理论上的晶粒稳定性低至3nm [1]。通过常规的软化学路线(多元醇工艺)[2,3]生成的合成FePt纳米颗粒显示出无序的面心立方(fcc)结构,具有低Ku和RT下的超顺磁行为。有序的L10四方结构通常是通过在还原性环境中进行后退火[4,5]来获得的,从而引起烧结产生的颗粒聚集,这对最终粒径和树脂分散性都有很大影响。我们进行的一项初步工作指出,通过在290℃下升高反应温度,可以基于Fe(acac)3和Pt(acac)2在还原溶剂和惰性气氛中的分解直接合成铁磁颗粒。用Triton X-100作溶剂,用聚乙烯吡咯烷酮(PVP)作保护剂,得到-330℃。所得纳米颗粒在室温下具有铁磁性,矫顽力场(Hc)介于0.4到1.0 KOe之间,具体取决于合成温度。但是,正如TEM分析所证明的那样,它们是磁性聚集的,并且对于300℃以上的合成温度,它们嵌入由溶剂部分分解产生的无定形基体中。这些观察结果为我们提供了一种合成非聚集铁磁纳米粒子的新颖方法。基本思想是在合成过程中将纳米颗粒变成铁磁性之前将其封闭在刚性基质中,以防止磁性聚集。使用PEG-600作为溶剂并迅速将温度升至300°C以上,会使多元醇凝结成片状。快速加热与增加的粘度相结合,限制了营养相向生长中的核的扩散,从而形成了典型地大小在5nm左右(由XRD和TEM确定)范围内的单分散纳米颗粒,随机分散在浓缩的基质中。与XRD分析相一致,指出了无序的fcc结构,磁性测量结果表明,在室温下所生长的粒子具有超顺磁特性,其阻断温度TB为60K,并且能垒分布较大。通过在动态高真空下进行热退火,可以实现铁磁有序四边形L10结构的相变。退火将有机基质转变为无定形碳,保留了原始的纳米颗粒尺寸,并阻止了高达1000°C的聚集,在此转变为热解石墨。 XRD显示在650℃下处理1小时后L10衍射峰的出现。在相同温度下4小时后,相变几乎完全完成,在室温下检测到矫顽力场(Hc)为2.5kOe,在5K下检测到矫顽力场为13kOe。即使在更高的温度下退火,即使导致结构性能的进一步提高,也会导致磁滞现象的复杂性,其起源仍在研究中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号