首页> 外文OA文献 >Thermal Emission Spectroscopy of Silicate Glasses and Melts: Applications to Remote Sensing of Glassy Volcanic Environments
【2h】

Thermal Emission Spectroscopy of Silicate Glasses and Melts: Applications to Remote Sensing of Glassy Volcanic Environments

机译:硅酸盐玻璃和熔体的热发射光谱:在玻璃火山环境的遥感中的应用

摘要

Thermal infrared (TIR) remote sensing is a useful tool for the detection and analysis of volcanic surfaces. The data have been used to determine heat flux, eruption rates, surface petrology, geochemistry, and textures, for example. The majority of past studies using TIR spectroscopy for compositional determination have focused primarily on crystalline minerals, as minerals possess high-order molecular structure, and unique and identifiable TIR spectral features. Although ubiquitous in both hazardous and non-hazardous volcanic terranes, silicate glasses are poorly studied spectrally. This is primarily due to the amorphous and structurally-disordered nature of glasses, which causes them to display very similar spectral features regardless of composition. Because of this, glasses are difficult to distinguish spectrally in the TIR, especially at lower spectral resolutions. Furthermore, spectral features change with the changing physical state of the glass. For example, as a silicate glass transitions from a solid to a molten state, the glass structure becomes less polymerized, bond angles within the O-Si-O structure decrease, and the number of non-bridging oxygens (NBO) increase. These structural changes are reflected in thermal emission spectra as a broadening of the main Si-O spectral feature, and an increase in its wavelength position. A micro glass-melting furnace has been developed specifically for use with a Nexus 670 FTIR spectrometer in order to collect in-situ thermal emission spectra of actively melting and cooling synthetic silicate glasses of dacitic and rhyolitic composition. Changes in the wavelength position, the emissivity, and the width of the laboratory emission spectra have been observed as the glasses transition from a fully molten to a completely solid state. Differences in spectral behavior and morphology are observed between a glass in a solid state, and its molten counterpart. Furthermore, the approximate temperature range over which the glass transition takes place is also identified. This growing library of laboratory-acquired solid glass and melt spectra will be used in conjunction with TIR airborne and field-based remote sensing instrumentation to more definitively characterize the ever-changing composition and physical state of active silicic lava domes and flows. This, in turn, will contribute to improvement of mapping and hazard assessment of volcanic environments.
机译:热红外(TIR)遥感是检测和分析火山表面的有用工具。例如,该数据已用于确定热通量,喷发速率,表面岩石学,地球化学和质地。过去使用TIR光谱进行成分测定的大多数研究主要集中在晶体矿物上,因为矿物具有高阶分子结构以及独特且可识别的TIR光谱特征。尽管在危险和非危险火山岩层中都普遍存在,但对硅酸盐玻璃的光谱研究却很少。这主要归因于玻璃的无定形和结构无序的性质,这使得它们显示非常相似的光谱特征,而与成分无关。因此,尤其在较低的光谱分辨率下,玻璃很难在TIR中进行光谱区分。此外,光谱特征随着玻璃的物理状态的变化而变化。例如,随着硅酸盐玻璃从固态转变为熔融态,玻璃结构变得较少聚合,O-Si-O结构内的键角减小,并且非桥连氧(NBO)的数量增加。这些结构变化反映在热发射光谱中,作为主要Si-O光谱特征的加宽和其波长位置的增加。专门开发了一种与Nexus 670 FTIR光谱仪配合使用的微型玻璃熔炉,以收集主动熔化和冷却大分子和流纹组成的合成硅酸盐玻璃的原位热发射光谱。当玻璃从完全熔融状态转变为完全固态时,已经观察到波长位置,发射率和实验室发射光谱的宽度的变化。在固态玻璃和熔融玻璃之间观察到光谱行为和形态的差异。此外,还确定了发生玻璃化转变的大致温度范围。这个不断增长的实验室获得的固体玻璃和熔融光谱库将与TIR机载和基于现场的遥感仪器结合使用,以更明确地表征活性硅熔岩穹顶和流动的不断变化的成分和物理状态。反过来,这将有助于改善火山环境的测绘和危害评估。

著录项

  • 作者

    Lee Rachel Jennifer;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号