首页> 外文OA文献 >Tukey order on sets of compact subsets of topological spaces
【2h】

Tukey order on sets of compact subsets of topological spaces

机译:拓扑空间的紧凑子集集上的Tukey阶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

A partially ordered set (poset), $Q$, is a emph{Tukey quotient} of a poset, $P$, written $Pgeq_T Q$, if there exists a map, a emph{Tukey quotient}, $phi : Po Q$ such that for any cofinal subset $C$ of $P$ the image, $phi(C)$, is cofinal in $Q$. Two posets are emph{Tukey equivalent} if they are Tukey quotients of each other. Given a collection of posets, $mathcal{P}$, the relation $leq_T$ is a partial order. The Tukey structure of $mathcal{P}$ has been intensively studied for various instances of $mathcal{P}$ [13, 14, 48, 53, 58]. Here we investigate the Tukey structure of collections of posets naturally arising in Topology. ududFor a space $X$, let $mathcal{K}(X)$ be the poset of all compact subsets of $X$, ordered by inclusion, and let $mathit{Sub}(X)$ be the set of all homeomorphism classes of subsets of $X$. Let $mathcal{K}(mathit{Sub}(X))$ be the set of all Tukey classes of the form $[mathcal{K}(Y)]_T$, where $Y in mathit{Sub}(X)$. The main purpose of this work is to study order properties of $(mathcal{K}(mathit{Sub}(mathbb{R})),leq_T)$ and $(mathcal{K}(mathit{Sub}(omega_1)),leq_T)$. ududWe attack this problem using two approaches. The first approach is to study internal order properties of elements of $mathcal{K}(mathit{Sub}(mathbb{R}))$ and $mathcal{K}(mathit{Sub}(omega_1))$ that respect the Tukey order --- calibres and spectra. The second approach is more direct and studies the Tukey relation between the elements of $(mathcal{K}(mathit{Sub}(mathbb{R})),leq_T)$ and $(mathcal{K}(mathit{Sub}(omega_1)),leq_T)$. ududAs a result we show that $(mathcal{K}(mathit{Sub}(mathbb{R})),leq_T)$ has size $2^mathfrak{c}$, has no largest element, contains an antichain of maximal size, $2^mathfrak{c}$, its additivity is $mathfrak{c}^+$, its cofinality is $2^mathfrak{c}$, $mathcal{K}(mathit{Sub}(mathbb{R}))$ has calibre $(kappa, lambda, mu)$ if and only if $mu leq mathfrak{c}$ and $mathfrak{c}^+$ is the largest cardinal that embeds in $mathcal{K}(mathit{Sub}(mathbb{R}))$. While the size and the existence of large antichains of $mathcal{K}(mathit{Sub}(omega_1))$ have already been established in [58], we determine special classes of $mathcal{K}(mathit{Sub}(omega_1))$ and the relation between these classes and the elements of $mathcal{K}(mathit{Sub}(mathbb{R}))$. ududFinally, we explore connections of the Tukey order with function spaces and the Lindel"of $Sigma$ property, which require giving the Tukey order more flexibility and larger scope. Hence we develop the emph{relative} Tukey order and present applications of relative versions of results on $(mathcal{K}(mathit{Sub}(mathbb{R})),leq_T)$ and $(mathcal{K}(mathit{Sub}(omega_1)),leq_T)$ to function spaces.
机译:部分排序的集合(姿势)$ Q $是姿势的$ P $的 emph {Tukey商},写为$ P geq_T Q $,如果存在地图,则为 emph {Tukey商}, $ phi:P to Q $,使得对于$ P $的任何共最终子集$ C $,图像$ phi(C)$在$ Q $中是共最终的。如果两个位姿彼此是Tukey的商,则为 emph {Tukey等效项}。给定一组姿势,$ mathcal {P} $,关系$ leq_T $是偏序。 $ mathcal {P} $的Tukey结构已针对$ mathcal {P} $的各种实例进行了深入研究[13,14,48,53,58]。在这里,我们研究了拓扑结构中自然产生的坐姿集合的Tukey结构。 ud ud对于空间$ X $,令$ mathcal {K}(X)$为$ X $的所有紧致子集的坐姿,按包含顺序排列,令$ mathit {Sub}(X)$为$ X $的子集的所有同胚类的集合。假设$ mathcal {K}( mathit {Sub}(X))$是所有Tukey类的集合,其形式为$ [ mathcal {K}(Y)] _ T $,其中$ Y in mathit {子}(X)$。这项工作的主要目的是研究$( mathcal {K}( mathit {Sub}( mathbb {R})), leq_T)$和$( mathcal {K}( mathit {子}( omega_1)), leq_T)$。 ud ud我们使用两种方法来解决此问题。第一种方法是研究$ mathcal {K}( mathit {Sub}( mathbb {R}))$和$ mathcal {K}( mathit {Sub}( omega_1)的元素的内部顺序属性)尊重Tukey顺序---机芯和光谱。第二种方法更直接,它研究了$( mathcal {K}( mathit {Sub}( mathbb {R})), leq_T)$和$( mathcal {K}( mathit {Sub}( omega_1)), leq_T)$。 ud ud结果显示$( mathcal {K}( mathit {Sub}( mathbb {R})), leq_T)$的大小为$ 2 ^ mathfrak {c} $,没有最大元素,包含一条最大大小为$ 2 ^ mathfrak {c} $的反链,其可加性为$ mathfrak {c} ^ + $,其共定性为$ 2 ^ mathfrak {c} $,$ mathcal {K}( mathit {Sub}( mathbb {R}))$具有口径$( kappa, lambda, mu)$,且仅当$ mu leq mathfrak {c} $和$ mathfrak {c} ^ + $是嵌入$ mathcal {K}( mathit {Sub}( mathbb {R}))$中的最大基数。尽管在[58]中已经确定了$ mathcal {K}( mathit {Sub}( omega_1))$的大小和存在的大型反链,但我们确定了$ mathcal {K}( mathit {Sub}( omega_1))$以及这些类与$ mathcal {K}( mathit {Sub}( mathbb {R}))$元素之间的关系。最后,我们探讨了Tukey顺序与函数空间和Lindel of $ Sigma $属性的连接,这要求给Tukey顺序更大的灵活性和更大的范围。因此,我们开发了 emph {relative} Tukey顺序以及$( mathcal {K}( mathit {Sub}( mathbb {R})), leq_T)$和$( mathcal {K}( mathit {Sub}( omega_1)), leq_T)$到函数空间。

著录项

  • 作者

    Mamatelashvili Ana;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号