首页> 外文OA文献 >Towards an Unsteady/Flamelet Progress Variable method for non-premixed turbulent combustion at supercritical pressures
【2h】

Towards an Unsteady/Flamelet Progress Variable method for non-premixed turbulent combustion at supercritical pressures

机译:迈向超临界压力下非预混湍流燃烧的非定常/火焰进展变量方法

摘要

Combustion devices operating at elevated pressures, such as liquid rocket engines (LRE), are usually characterized by supercritical thermodynamic conditions. Propellants injected into the combustion cham- ber experience real fluid effects on both their mixing and combustion. Transition through super-criticality implies abrupt variations in thermochemical properties which, together with chemical reactions and high turbulent levels introduce spatial and temporal scales that make these processes impractical to be simulated directly. Reynolds-Averaged Navier-Stokes (RANS) and Large Eddies Simulation (LES) equipped with suitable turbulent combustion modeling are therefore mandatory to attempt numerical simulation on real- istic length scales. In the present work, the building blocks for extending the unsteady/flamelet progress variable approach for turbulent combustion modeling to supercritical non-premixed turbulent flames are presented. Such approach requires a large number of unsteady supercritical laminar flamelet solutions at supercritical pressures, usually referred as flame structures, to be preliminarily established by solving the flamelet equations with suitable real fluid thermodynamics. Given such unsteady flame structures, flamelet libraries can then be generated for all thermochemical quantities. The explicit dependence on flamelet time is usually eliminated using mixture fraction, reaction progress parameter, and maximum scalar dissipation rate as independent flamelet parameters. Real fluid thermodynamics used for such unsteady supercritical laminar flamelet solutions, is taken into account by means of a computationally efficient cubic equation of state. In order to have a better handling of real gas mixtures, the real gas equation of state is written in a comprehensive three-parameter fashion. A priori analysis at supercritical pressures of transient flame structures is performed in order to study how solutions populate the flamelet state space which is usually characterized by the S-shape diagram representing a collection of steady solutions. High-pressure condi- tions ranging from 60 to 300 bar are chosen as representative of a methane/liquid-oxygen rocket engine operating conditions
机译:在高压下运行的燃烧设备,例如液体火箭发动机(LRE),通常具有超临界热力学条件。喷射到燃烧室中的推进剂在混合和燃烧过程中都会受到流体的影响。通过超临界转变意味着热化学性质的突然变化,再加上化学反应和高湍流水平,会引入空间和时间尺度,使这些过程不易直接模拟。因此,必须配备合适的湍流燃烧模型的雷诺平均Navier-Stokes(RANS)和大涡模拟(LES)才能尝试在实际长度尺度上进行数值模拟。在当前的工作中,提出了用于将湍流燃烧模型的非稳态/小火焰进展变量方法扩展到超临界非预混湍流火焰的构造块。这种方法需要通过以合适的实际流体热力学来求解小火焰方程,来初步建立通常被称为火焰结构的,在超临界压力下的大量非稳定的超临界层流小火焰溶液。给定这种不稳定的火焰结构,然后可以针对所有热化学量生成小火焰库。通常使用混合物分数,反应进程参数和最大标量耗散率作为独立的小火焰参数来消除对小火焰时间的明确依赖性。通过计算效率高的立方状态方程,考虑了用于这种非稳态超临界层流小火焰解的实际流体热力学。为了更好地处理真实气体混合物,真实气体状态方程以全面的三参数形式编写。为了研究溶液如何填充小火焰状态空间,通常在瞬态火焰结构的超临界压力下进行先验分析,通常以代表稳定溶液集合的S形图为特征。选择60至300 bar的高压条件作为甲烷/液氧火箭发动机运行条件的代表

著录项

  • 作者

    Lapenna P.E.; Creta F.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号