首页> 外文OA文献 >Biogas production in regional integrated biodegradable waste treatment – Possibilities for improving energy performance and reducing GHG emissions
【2h】

Biogas production in regional integrated biodegradable waste treatment – Possibilities for improving energy performance and reducing GHG emissions

机译:区域可生物降解废物综合处理中的沼气生产–改善能源绩效和减少温室气体排放的可能性

摘要

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland.There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it.According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion.The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement.Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.
机译:可生物降解废物对环境造成的最大威胁是垃圾分解产生的垃圾填埋场产生的甲烷。垃圾填埋指令(1999/31 / EC)旨在减少可生物降解垃圾的填埋。在芬兰,2012年有31%的可生物降解的城市垃圾最终进入了垃圾填埋场。由于即将实施的芬兰对生物可降解垃圾的垃圾填埋禁令,减少垃圾填埋的压力大大增加。有必要讨论提高垃圾填埋场利用率的需求。区域可再生能源生产中的可生物降解废物,以最大程度减少温室气体排放的方式利用废物。本论文的目标是:(1)找到影响可降解废物可再生能源回收可能性的重要因素;(2)确定影响沼气生产系统温室气体平衡的主要因素以及如何改善沼气生产系统;(3)寻找定义沼气生产系统能源性能的方式及其影响因素。根据论文,影响可生物降解废物产生区域可再生能源可能性的最重要因素是:可用原料量,原料性质,选择的利用技术,需求能源和材料产品以及利用原料的经济状况。通过厌氧消化生产沼气被视为在农业密集地区利用可生物降解废物的主要技术。造成这种情况的主要原因是,粪便被视为主要原料,并且最好与厌氧消化一起使用,厌氧消化可以产生可再生能源,同时又保持耕地上养分的扩散。沼气厂应位于热需求量附近,该热量需求量也足以在夏季也吸收产生的热量,并应位于可以利用消化物的农业区附近。沼气使用的另一种选择是将其升级为沼气,这需要靠近天然气网格的位置。沼气生产中最具吸引力的是市政和工业可生物降解的废物,因为工厂从中收取的入场费可以提供80%以上的收入。另一方面,指导小型沼气厂的入场费批量可以使分散的沼气生产更加经济。此外,干燥的农业废料(例如稻草)的燃烧将比通过厌氧消化利用它们提供更多的能量。沼气生产系统的完整能源性能评估需要使用多个系统边界。然后可以将它们用于计算沼气生产,沼气厂,沼气利用和沼气生产系统的产出/投入比,这些产出/投入比可以用于分析沼气生产链的不同部分。目前,很难比较不同的沼气厂,因为沼气生产的能源性能定义存在很大差异。更加一致的分析能源绩效的方法将允许将沼气厂彼此之间以及其他回收系统之间进行比较,并找到进一步改善的可能位置。从温室气体排放平衡和能源绩效的角度来看,沼气厂的能源消耗都是最重要的因素。满足工厂寄生能源需求的可再生能源使用将是减少工厂温室气体排放的最有效方法。与沼气热电联产相比,可以通过将沼气升级为沼气并取代汽车中的天然气或汽油使用来增加温室气体的减排量。人们认为,用消化液替代矿物肥料所产生的排放量减少的意义不大,而传播消化液所产生的N2O排放量更大,可能会超过取代矿物肥料所产生的排放量。

著录项

  • 作者

    Havukainen Jouni;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号