首页> 外文OA文献 >CFD Modelling of Direct Contact Condensation in Suppression Pools by Applying Condensation Models of Separated Flow
【2h】

CFD Modelling of Direct Contact Condensation in Suppression Pools by Applying Condensation Models of Separated Flow

机译:应用分离流冷凝模型建立抑制池中直接接触冷凝的CFD建模

摘要

The condensation rate has to be high in the safety pressure suppression pool systems ofBoiling Water Reactors (BWR) in order to fulfill their safety function. The phenomenadue to such a high direct contact condensation (DCC) rate turn out to be very challengingto be analysed either with experiments or numerical simulations. In this thesis, thesuppression pool experiments carried out in the POOLEX facility of Lappeenranta Universityof Technology were simulated. Two different condensation modes were modelledby using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models appliedwere the typical ones to be used for separated flows in channels, and their applicability tothe rapidly condensing flow in the condensation pool context had not been tested earlier.A low Reynolds number case was the first to be simulated. The POOLEX experimentSTB-31 was operated near the conditions between the ’quasi-steady oscillatory interfacecondensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensationmodels of Lakehal et al. and Coste & Lavi´eville predicted the condensationrate quite accurately, while the other tested ones overestimated it. It was possible to getthe direct phase change solution to settle near to the measured values, but a very highresolution of calculation grid was needed.Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated.The POOLEX experiment STB-28 was chosen, because various standard and highspeedvideo samples of bubbles were recorded during it. In order to extract numericalinformation from the video material, a pattern recognition procedure was programmed.The bubble size distributions and the frequencies of chugging were calculated with thisprocedure. With the statistical data of the bubble sizes and temporal data of the bubble/jetappearance, it was possible to compare the condensation rates between the experimentand the CFD simulations.In the chugging simulations, a spherically curvilinear calculation grid at the blowdownpipe exit improved the convergence and decreased the required cell count. The compressibleflow solver with complete steam-tables was beneficial for the numerical success ofthe simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´evillemodel produced realistic chugging behavior. The initial level of the steam/water interfacewas an important factor to determine the initiation of the chugging. If the interfacewas initialized with a water level high enough inside the blowdown pipe, the vigorouspenetration of a water plug into the pool created a turbulent wake which invoked thechugging that was self-sustaining. A 3D simulation with a suitable DCC model producedqualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFTanalysis of the bubble size data and the pool bottom pressure data gave useful informationto distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
机译:为了实现其安全功能,沸水反应堆(BWR)的安全压力抑制池系统中的凝结率必须很高。事实证明,由于如此高的直接接触冷凝(DCC)率,这种现象非常具有挑战性,无论是通过实验还是通过数值模拟进行分析。本文模拟了在拉彭兰塔理工大学的POOLEX设施中进行的抑制池实验。通过使用2相CFD代码NEPTUNE CFD和TransAT对两种不同的冷凝模式进行了建模。所应用的DCC模型是用于通道中分离流的典型模型,并且尚未较早地测试它们对冷凝池环境中快速冷凝流的适用性。首先模拟了低雷诺数的情况。 POOLEX实验STB-31在“准稳态振荡界面冷凝”模式和“排污管道内冷凝”模式之间的条件下运行。 Lakehal等人的凝结模型。 Coste&Lavi´eville相当准确地预测了凝结率,而其他测试者则高估了凝结率。可以得到直接的相变解以使其稳定在接近测量值的位置,但是需要非常高分辨率的计算网格。其次,模拟了对应于``颤动''模式的高雷诺数情况.POOLEX实验STB-28之所以选择,是因为在此过程中记录了各种标准的和高速的气泡样本。为了从视频资料中提取数值信息,编写了一种模式识别程序,并以此程序计算了气泡尺寸分布和颤动频率。借助气泡大小的统计数据和气泡/喷射外观的时间数据,可以比较实验与CFD模拟之间的冷凝率。在颤动模拟中,排污管出口处的球面曲线计算网格改善了收敛性,减少了所需的细胞数。具有完整蒸汽表的可压缩流动求解器有利于模拟的数值成功。休斯-达菲模型以及一定程度上的Coste&Lavi´eville模型产生了逼真的颤抖行为。蒸汽/水界面的初始水位是确定凝结开始的重要因素。如果在排污管内用足够高的水位对接口进行了初始化,则水塞的强烈渗入会形成湍流的尾流,从而引起自我维持的处理。使用合适的DCC模型进行的3D模拟定性地产生了非常逼真的气泡和喷流形状。气泡大小数据和池底压力数据的比较FFT分析提供了有用的信息,可用来区分振动,冒泡和池结构振荡的本征模式。

著录项

  • 作者

    Tanskanen Vesa;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号