首页> 外文OA文献 >Field and Gauge Theories with Ultracold Gauge Potentials and Fields
【2h】

Field and Gauge Theories with Ultracold Gauge Potentials and Fields

机译:具有超冷量规势和场的场和规理论

摘要

In the last decade there has been an intense activity aimed at the quantum simulation of interactingudmany-body systems using cold atoms [1, 2]. The idea of quantum simulations traces back to Feynmanud[3], who argued that the ideal setting to study quantum systems would be a quantum experimentaludsetup rather then a classical one - the latter one being fundamentally limited due to its hardware classicaludstructure. This is a particularly important problem given the intrinsic complexity of interactingudmany-body problems, and the difficulties that arise when tackling them with numerical simulations -udtwo paradigmatic examples being the sign(s) problem affecting Monte Carlo simulations of fermionicudsystems, and the real time dynamics in more than one spatial dimension.udUltracold atoms offer a very powerful setting for quantum simulations. Atoms can be trappedudin tailored optical and magnetic potentials, also controlling their dimensionality. The inter-atomicudinteractions can be tuned by external knobs, such as Feshbach resonances. This gives a large freedomudon model building and, with suitable mappings, they allow the implementation of desired target models.udThis allowed an impressive exploitation of quantum simulators on the context of condensed matterudphysics.udThe simulation of high-energy physics is an important line of research in this field and it is lessuddirect. In particular it requires the implementation of symmetries like Lorentz and gauge invarianceudwhich are not immediately available in a cold atomic setting. Gauge fields are ubiquitous inudphysics ranging from condensed matter [4–6] and quantum computation [7, 8] to particle physics [9],udan archetypical example being Quantum Chromodynamics (QCD) [10,11], the theory of strong nuclearudforces. Currently open problems in QCD, providing a long-term goal of cold atomic simulations, includeudconfinement/deconfinement and the structure of color superconducting phases at finite chemicaludpotential [12]. Even though QCD is a very complicated theory (to simulate or study), it is possibleudto envision a path through implementation of simpler models. Furthermore, it is also expected thatudinteresting physics is found on such “intermediate models” which may deserve attention irrespectivelyudof the QCD study. A very relevant model in this regard is the Schwinger model (Quantum Electrodynamicsudin 1+1 dimensions) [13]. This theory exhibits features of QCD, such as confinement [14],udand is at the very same time amenable to both theoretical studies and simpler experimental schemes.udThis model was the target of the first experimental realization of a gauge theory with a quantumudsimulator [15].udThe work on this Thesis is, in part, motivated by the study of toy models which put in evidenceudcertain aspects that can be found in QCD. Such toy models provide also intermediate steps in theudpath towards more complex simulations. The two main aspects of QCD which are addressed hereudare symmetry-locking and confinement. The other main motivation for this study is to develop audsystematic framework, through dimensional mismatch, for theoretical understanding and quantumudsimulations of long-range theories using gauge theories.udThe model used to study symmetry-locking consists of a four-fermion mixture [16]. It has the basicudingredients to exhibit a non-Abelian symmetry-locked phase: the full Hamiltonian has an SU (2) ×udSU (2) (global) symmetry which can break to a smaller SU (2) group. Such phase is found in a extensiveudregion of the phase diagram by using a mean-field approach and a strong coupling expansion. A possibleudrealization of such system is provided by an Ytterbium mixture. Even without tuning interactions,udit is shown that such mixture falls inside the the locked-symmetry phase pointing towards a possibleudrealization in current day experiments.udThe models with dimensional mismatch investigated here have fermions in a lower dimensionalityudd + 1 and gauge fields in higher dimensionality D + 1. They serve two purposes: establish mappingsudto non-local theories by integration of fields [17] and the study of confinement [18].udIn the particular case of d = 1 and D = 2 it is found that some general non-local terms can beudobtained on the Lagrangian [17]. This is found in the form of power-law expansions of the Laplacianudmediating either kinetic terms (for bosons) or interactions (for fermions). The fact that such expansionsudare not completely general is not surprising since constraints do exist, preventing unphysical featuresudlike breaking of unitarity. The non-local terms obtained are physically acceptable, in this regard, sinceudthey are derived from unitary theories. The above mapping is done exactly. In certain cases it isudshown that it is possible to construct an effective long-range Hamiltonian in a perturbative expansion.udIn particular it is shown how this is done for non-relativistic fermions (in d = 1) and 3 + 1 gaugeudfields. These results are relevant in the context of state of the art experiments which implementudmodels with long-range interactions and where theoretical results are less abundant than for the caseudof local theories. The above mappings establish a direct relation with local theories which allowudtheoretical insight onto these systems. Examples of this would consist on the application of Mermin-udWagner-Hohenberg theorem [19, 20] and Lieb-Robinson bounds [21], on the propagation of quantumudcorrelations, to non-local models. In addition they can also provide a path towards implementation ofudtunable long-range interactions with cold atoms. Furthermore, in terms of quantum simulations, theyudare in between the full higher dimensional system and the full lower dimensional one. Such property isudattractive from the point of view of a gradual increase of complexity for quantum simulations of gaugeudtheories.udAnother interesting property of these models is that they allow the study of confinement beyond theudsimpler case of the Schwinger model. The extra dimensions are enough to attribute dynamics to theudgauge field, which are no longer completely fixed by the Gauss law. The phases of the Schwinger modeludare shown to be robust under variation of the dimension of the gauge fields [18]. Both the screenedudphase, of the massless case, and the confined phase, of the massive one, are found for gauge fields inud2+1 and 3+1 dimensions. Such results are also obtained in the Schwinger- Thirring model. This showsudthat these phases are very robust and raises interesting questions about the nature of confinement.udRobustness under Thirring interactions are relevant because it shows that errors on the experimentaludimplementation will not spoil the phase. Even more interesting is the case of gauge fields in higheruddimensions since confinement in the Schwinger model is intuitively atributed to the dimensionality ofudthe gauge fields (creating linear potentials between particles).udThis Thesis is organized as follows. In Chapter 1, some essential background regarding quantumudsimulations of gauge theories is provided. It gives both a brief introduction to cold atomic physics andudlattice gauge theories. In Chapter 2, it is presented an overview over proposals of quantum simulatorsudof gauge potentials and gauge fields. At the end of this Chapter, in Section 2.3 it is briefly presentedudongoing work on a realization of the Schwinger model that we term Half Link Schwinger model. There,udit is argued, some of the generators of the gauge symmetry on the lattice can be neglected withoutudcomprimising gauge invariance. In Chapter 3, the results regarding the phase diagram of the fourfermionudmixture, exhibiting symmetry-locking, is presented. In Chapter 4, the path towards controllingudnon-local kinetic terms and interactions is provided, after a general introduction to the formalism ofuddimensional mismatch. At the end the construction of effective Hamiltonians is described. Finally,udChapter 5 concerns the study of confinement and the robustness of it for 1+1 fermions. The first partudregards the Schwinger-Thirring with the presence of a -term while, in the second part, models withuddimensional mismatch are considered. The thesis ends with conclusions and perspectives of futureudwork based on the results presented here.
机译:在过去的十年中,针对使用冷原子的相互作用多体系统的量子模拟进行了激烈的活动[1、2]。量子模拟的思想可以追溯到Feynman ud [3],他认为,研究量子系统的理想设置是量子实验 udsetup,而不是经典的-由于后者的硬件经典,后者从根本上受到了限制。 udstructure。鉴于相互作用超体问题的内在复杂性,以及在用数值模拟解决它们时遇到的困难,这是一个特别重要的问题- udtwo范式示例是影响费米电子 udsystems的Monte Carlo模拟的正负号问题, udUltracold原子为量子模拟提供了非常强大的设置。原子可以被诱捕定制的光和磁势,也可以控制其尺寸。原子间相互作用可以通过外部旋钮(例如Feshbach共振)进行调整。这提供了较大的自由度 udon模型构建,并具有适当的映射,它们允许实现所需的目标模型。 ud这允许在凝聚态 udphysics的背景下对量子模拟器进行令人印象深刻的开发。 ud高能物理的仿真是该领域的重要研究领域,较少直接。特别是,它要求实现在冷原子设置中不立即可用的对称性,例如洛伦兹和规范不变性 ud。测量场在 udphysics中是无处不在的,从凝聚态物质[4-6]和量子计算[7,8]到粒子物理学[9], udan的原型例子是量子色动力学(QCD)[10,11]。强大的核武力。 QCD中目前存在的开放性问题为冷原子模拟提供了长期目标,包括 udconfine / deconfinement和在有限化学势下的颜色超导相的结构[12]。即使QCD是一个非常复杂的理论(用于模拟或研究),也有可能设想实现更简单模型的路径。此外,还期望在这样的“中间模型”上发现有趣的物理学,这可能与QCD研究无关。在这方面,一个非常相关的模型是Schwinger模型(Quantum Electrodynamics udin 1 + 1维度)[13]。该理论具有QCD的特征,例如约束[14], udand同时适用于理论研究和较简单的实验方案。 ud该模型是第一个通过量子实现量规理论的实验实现的目标 udsimulator [15]。 ud本论文的研究部分是由对玩具模型的研究所推动的,玩具模型的研究证明了 CDQ中可以找到的某些方面。这样的玩具模型还提供了朝着更复杂的仿真过渡的中间步骤。 QCD的两个主要方面在这里讨论敢于对称锁定和限制。这项研究的另一个主要动机是通过尺寸失配来开发一个 ud系统的框架,用于使用轨距理论对远距离理论进行理论理解和量子模拟。 ud用于研究对称锁定的模型包括一个四费米子混合物[16]。它具有显示非阿贝尔对称锁定相位的基本附属成分:完整的哈密顿量具有SU(2)× udSU(2)(全局)对称性,可以分解为较小的SU(2)组。通过使用均值场方法和强耦合展开,可以在相图的宽幅 ud区域中找到这种相位。这种系统的可能的实现由an混合物提供。即使没有调谐交互, udit仍表明这种混合物落在锁定对称阶段之内,这可能会导致当前实验中的超现实化。 ud这里研究的尺寸失配模型的费米子具有较低的尺寸 udd +1和在更高维度D + 1上测量场。它们有两个作用:通过场的集成[17]和约束研究[18]建立映射 udto非局部理论。 ud在d = 1和D =的特殊情况下2发现在拉格朗日上可以得到一些一般的非局部项[17]。这可以通过拉普拉斯算子/幂乘幂定律展开的形式找到,该幂律展开是动力学项(对于玻色子)或相互作用(对于费米子)。由于存在约束,因此防止了非物理特征类似统一性的破坏,因此这种扩展胆敢不完全普遍的事实不足为奇。在这方面,获得的非本地术语在身体上是可以接受的,因为它们源自单一理论。以上映射已完全完成。在某些情况下, ud表明可以在扰动展开中构造有效的远程哈密顿量。 ud特别说明了如何对非相对论费米子(在d = 1中)和3 +1规范进行操作 udfields。这些结果与最先进的实验相关,这些实验实现了具有远距离交互作用的 udmodel,并且理论结果比本地理论的情况少。上面的映射与本地理论建立了直接关系,从而可以对这些系统进行理论上的洞察。这方面的例子包括将Mermin- udWagner-Hohenberg定理[19,20]和Lieb-Robinson界[21]应用于量子不相关的传播到非局部模型。此外,它们还可以为实现与冷原子的不可思议的远程相互作用提供一条途径。此外,就量子模拟而言,它们介于完全高维系统和完全低维系统之间。从规范理论的量子模拟的复杂性逐渐增加的角度来看,这样的性质是无益的。 ud这些模型的另一个有趣的性质是,它们允许在Schwinger模型的简单情况之外进行限制研究。额外的维度足以将动力学归因于 udgauge字段,高斯定律不再完全将其固定。 Schwinger模型的相位在胆量场尺寸变化时表现出较强的稳定性[18]。对于在ud2 + 1和3 + 1维度中的规范场,都发现了无质量情况下的屏蔽无相位和大质量情况下的受限相位。这样的结果也可以在施温格-蒂林模型中获得。这表明 ud这些阶段非常鲁棒,并且对限制的性质提出了有趣的问题。 udhiring交互作用下的鲁棒性是相关的,因为它表明实验 udimplement的错误不会破坏该阶段。更高维的规范场的情况更加有趣,因为Schwinger模型的局限性直观地归因于规范场的维数(在粒子之间创建线性势)。本文的结构如下。在第一章中,提供了一些有关规范理论的量子模拟的基本背景。它简要介绍了冷原子物理学和超晶格规理论。在第二章中,概述了有关量子模拟器 udof规范势和规范场的建议。在本章的最后,在第2.3节中,简要介绍了关于Schwinger模型实现的工作,我们称之为Half Link Schwinger模型。在这里, udit认为,可以忽略晶格上的轨距对称性的某些生成器,而不会规化轨距不变性。在第三章中,给出了关于四费米子/混合气体相图的结果,该相图显示出对称锁定。在第4章对 udDimension失配形式主义进行了一般介绍之后,第4章提供了控制 udnon-局部动力学项和相互作用的途径。最后,描述了有效的哈密顿量的构造。最后,第5章涉及对1 + 1费米子的禁闭及其鲁棒性的研究。第一部分忽略了带有-term的Schwinger-Thirring,而第二部分考虑了具有 udDimension不匹配的模型。本文以本文提出的结果为基础,对未来的工作进行总结和展望。

著录项

  • 作者

    Pinto Barros Joao Carlos;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 入库时间 2022-08-20 20:30:23

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号