首页> 外文OA文献 >Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics
【2h】

Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

机译:专门为推进飞机空气声学量身定制的V型喷嘴的计算分析

摘要

A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic interaction effects.
机译:针对起飞条件下现代分离式流量喷嘴上的不对称风扇V型人字形,提出了计算流场和预测的射流噪声源分析。推进式飞机航空声学非对称风扇喷嘴设计为具有方位角变化的人字形图案,靠近塔架处有更长的人字形。还研究了没有人字形的基准圆形喷嘴和具有方位角均匀的人字形的参考喷嘴。非对称风扇V形人字形喷嘴的目的是通过在塔架和V形人字形喷嘴之间产生良好的推进机身气声相互作用效果来提高降噪潜力。在模型规模测试和飞行测试数据中观察到这种有利的相互作用并改善了降噪效果,并且在其他研究中也有报道。这项研究的目的是确定基本的流动和噪声源机制。流动模拟在结构化网格上使用渐近稳定的可压缩雷诺平均Navier-Stokes方程。使用并行的多块结构化网格代码PAB3D执行流计算。使用基于具有各向异性雷诺应力建模的Lighthill声学模拟的Jet3D代码,对本地噪声源进行映射和计算集成。在这项研究中,可以正确预测降噪趋势。 Jet3D还用于生成噪声源图,然后将其与局部流特征关联。流动研究表明,靠近塔架的较长风扇人字形的不对称性会降低塔架本身引起的二次流的强度,从而显着延迟了风扇和核心剪切层的不对称合并。效果是减少了湍流峰值动能并将其向下游移动,从而降低了整体噪声的产生。这种结合了流动和噪声的预测方法已使人们对风扇V形人字形喷嘴的物理原理有了相当大的了解,而该V型人字形喷嘴被设计为包括推进机身的气声相互作用效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号