首页> 外文OA文献 >Continuous optimization methods for onvex mixed-integer nonlinear programming
【2h】

Continuous optimization methods for onvex mixed-integer nonlinear programming

机译:凸混合整数非线性规划的连续优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The topic of this dissertation is the design of fast branch-and-bound algorithms that use intelligently adapted approaches from continuous optimization for solving convex mixed-integer nonlinear programming problems. This class of optimization problems is NP-hard and polynomial-time algorithms for these problems are therefore unlikely to exist (unless P=NP). The importance of this class is highlighted by the fact that many real-world applications can be modeled as a (convex) mixed-integer nonlinear programming problem. Currently, there are several standard techniques such as outer approximation that are used within recent state-of-the-art software. Although all these algorithms include sophisticatedimprovements such as primal heuristics and effective preprocessing, they do not take into account the large gap between the algorithmic performance of NLP and IP solvers. While NLP solvers are well-engineered for large-scale problems, MIP problems of similar sizes are by far harder to solve in practice. Therefore, when using NLP techniques within MIP solvers, these NLP algorithms have to be adjusted to handle small-size instances effectively. Taking this problem into account, we present three branch-and-bound algorithms, based on a former work by Buchheim et al. (2012) on unconstrained convex quadratic integer programming problems. The main strategies used within this branch-andbound framework include extensive preprocessing and fast incremental computations, aiming at a very fast enumeration of the nodes. The first algorithm we present is designed to solve convex quadratic mixed-integer programming problems with linear inequality constraints and is based on a new feasible active set algorithm applied to the dual of the continuous relaxation. This active set algorithm is tailored for the continuous problem and fully exploits its structure. Furthermore, a warmstarting procedure is used to reduce the number of active set iterations per node. The second algorithm we introduce is an approach called quadratic outer approximation for solving box-constrained convex mixed-integer nonlinear programming problems. It extends the classical outer approximation by using quadratic underestimators leading to a faster convergence in practice. Finally, the last algorithm we devise is aimed at a class of mean-risk portfolio optimization problems that can be modeled as convex mixed-integer programming problems with a single linear budget constraint. For this application we propose a branch-and-bound scheme using a modified Frank-Wolfe type algorithm to solve the node relaxations. Similarly to the branch-and-bound algorithms mentionded above we exploit the simplicity of the relaxations to enumerate the nodes as quickly as possible rather than focussing on strong dual bounds. We implemented all three algorithms and compared their performance with several state-of-the art approaches. Our extensive computational studies show that all new approaches presented in this thesis are able to effectively solve large classes of real-world instances.
机译:本文的主题是快速分支定界算法的设计,该算法使用智能自适应方法从连续优化中求解凸混合整数非线性规划问题。这类优化问题是NP难解的,因此不大可能存在针对这些问题的多项式时间算法(除非P = NP)。可以通过将许多实际应用程序建模为(凸)混合整数非线性规划问题这一事实来突出说明此类的重要性。当前,在最新的最新软件中使用了几种标准技术,例如外部逼近。尽管所有这些算法都包含诸如原始启发式算法和有效预处理之类的复杂改进,但它们并未考虑NLP和IP求解器的算法性能之间的巨大差距。尽管NLP求解器针对大规模问题进行了精心设计,但实际上在实践中很难解决类似规模的MIP问题。因此,在MIP求解器中使用NLP技术时,必须调整这些NLP算法以有效处理小型实例。考虑到这个问题,我们基于Buchheim等人以前的工作提出了三种分支定界算法。 (2012年)关于无约束凸二次整数规划问题。在分支分支框架中使用的主要策略包括广泛的预处理和快速增量计算,目的是非常快速地枚举节点。我们提出的第一个算法旨在解决具有线性不等式约束的凸二次混合整数规划问题,它基于一种适用于连续松弛对偶的新的有效主动集算法。该活动集算法是针对连续问题量身定制的,并充分利用了其结构。此外,使用热启动过程来减少每个节点的活动集迭代次数。我们介绍的第二种算法是一种称为二次外部逼近的方法,用于解决盒约束凸混合整数非线性规划问题。它通过使用二次低估器扩展了经典的外部近似,从而在实践中实现了更快的收敛。最后,我们设计的最后一个算法针对一类平均风险投资组合优化问题,可以将其建模为具有单个线性预算约束的凸混合整数规划问题。对于此应用程序,我们提出了一种使用改进的Frank-Wolfe类型算法的分支定界方案来解决节点松弛问题。与上面提到的分支定界算法类似,我们利用松弛的简单性来尽可能快地枚举节点,而不是专注于强对偶边界。我们实现了这三种算法,并将它们的性能与几种最新方法进行了比较。我们广泛的计算研究表明,本文提出的所有新方法都能够有效地解决大量实际实例。

著录项

  • 作者

    Trieu Long;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号