首页> 外文OA文献 >Three-dimensional integration and visualization of structural field data : tools for regional subsurface mapping = Integration et visualisation 3-D de données structurales de terrain : outils pour la cartographie géologique régionale
【2h】

Three-dimensional integration and visualization of structural field data : tools for regional subsurface mapping = Integration et visualisation 3-D de données structurales de terrain : outils pour la cartographie géologique régionale

机译:结构场数据的三维集成和可视化:用于区域地下测绘的工具=结构场数据的3-D集成和可视化:用于区域地质测绘的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional computer modelling of geological phenomena is rapidly emerging as a field within the already mushrooming science of computer visualization. In geological applications three-dimensional interpretations are routinely performed through the use of two-dimensional map data and knowledge about the geological history of an area. These interpretations are traditionally depicted with isometric or perspective block diagrams and vertical or horizontal cross-sections. Constructing these three-dimensional snap-shots has been laborious, imprecise and limited to a single viewpoint. The methods presented here automate some of the more laborious tasks and enhance the three-dimensional interpretation environment. Methodology focuses on using field-based structural data, from a variety of scales, to create speculative three-dimensional surfaces that can be useful in addressing geological problems. These methods could help in resolving cryptic early fold geometry, extending stratiform mineralization and the subsurface interpretation of regional thrusts, unconformities or key lithostratigraphic boundaries. Several UNIX based programs are presented for performing the interpolation, extension and conversion tasks required in these approaches. Programs are implemented in conjunction with the commercial three-dimensional visualization and modelling software EarthVision® and gOcad®. Algorithms focus on the densification and variable projection of distributed three-dimensional data which share a common curvilinear geological feature. The result of the various interpolation and extension functions is the conversion of two-dimensional lines to three-dimensional surfaces.ududA polynomial and hybrid B-Spline interpolation technique optimizes geometric property components. The automated data-driven technique is applicable for geological problems in which structures are constrained by local linear and planar measurements. Input features are topographic intersections of relatively continuous irregular curved surfaces, which have a near linear known depth predictability at some point along the structure. The local direction cosine estimates derived along surface traces of geological structures are interpolated, and direction vectors linearly projected to depth to form local structural surfaces or 'ribbons'. The program is useful for depicting portions of variably plunging fold geometries as structural ribbons, which in-turn act as visual guides during interpretive fold construction. Idealized and actual field examples of regionally continuous shear zones and brittle faults are presented, along with the development of three-dimensional structural fabric trajectories, horizon propagation, and plutonic boundary geometry evaluation.ududSemi-automated techniques are utilized with knowledge-driven interactive graphics. An interpretive or 'design' approach to surface construction is applied to low density data sets which are too sparse for standard global automated interpolation. Bézier curves and surface patches are implemented to act as interpretive construction lines that respect the constraints imposed by structural orientation data. The programs hinge.awk, cast.awk, bspline.awk and bezpatch.awk calculate the interpolated values from the spatial input data. Three-dimensional construction lines are defined by tangents to local planar features, and the projection of key geologic structures. Supporting the interpolation tools, the program trace.awk estimates the local strike and dip of vertices along elevation registered three-dimensional curvilinear map traces. The planar solution method can be applied in highrelief terrains, or to extend three-dimensional curvilinear features from sub-surface mining data.ududTechniques are applied on field data from the low-relief and structurally complex Archean Abitibi greenstone belt. Speculative models can be created from such terrains, provided data is respected and appropriate methods are applied at a given scale. The field component focuses on extracting data from maps and optimizing the three-dimensional graphic editing environment for making better interpretations at outcrop, mine and regional scales.ududApplied techniques used in this study include:udud? Three-dimensional structural symbology: the visualisation of three-dimensional structural symbols representing point observations of bedding, lineations and foliation fabric;udud? Structural attribution: the attachment of structural point observations to linear features through the use of a proximity filter. This is done with the program field.awk;udud? Variable down-plunge projection: the construction of custom down-plunge projections from surface traces;udud? Bézier-based graphics: examples of interactive three-dimensional interpretations with Bézier-based curve;udud? Hybrid surface design: a two-step approach to three-dimensional geologic surface design using both Bézier patches and discrete smooth interpolation (DSI), constrained by map traces and local slopes;udud? Three-dimensional Map propagation: a method for propagating map elements using two-dimensional map data and field-based plunge models. The program dive.awk is presented as an example of a simple propagation.ududThe results of this study indicate that a constrained-interpretive approach to three-dimensional visualization is valid for interpreting large to small-scale geological structures, even if the data base is limited to two-dimensional map-based information. This geometric approach provides an initial development path for what could become the routine combination of extracted geological map based information, surface topographic and structural data, and the intuitive knowledge of a geological 'designer'. The developed techniques listed above and presented in this study enhance the field-based geologists ability to create communicable three-dimensional models of complex surfaces. Regardless of the state of visualization technologies, the success of three-dimensional geological modelling is still dependent on the data density, clustering and depth variability of known structural observations. Most important perhaps are the geological relationships of local and regional structures with the bounding surfaces being modelled. New software will be needed to assess the quality of geological models based on these input parameters.
机译:地质现象的三维计算机建模正在迅速发展为计算机可视化科学领域中的一个领域。在地质应用中,通常通过使用二维地图数据和有关区域地质历史的知识来进行三维解释。传统上用等轴测图或透视图以及垂直或水平横截面来描绘这些解释。构造这些三维快照非常费力,不精确并且仅限于一个观点。此处介绍的方法可自动执行一些较费力的任务,并增强了三维解释环境。方法论着重于使用各种规模的基于现场的结构数据来创建可推测的三维表面,这些表面可用于解决地质问题。这些方法可以帮助解决神秘的早期褶皱几何特征,扩展地层状矿化作用以及对地下逆冲,不整合面或关键岩性地层学边界的地下解释。介绍了几种基于UNIX的程序,用于执行这些方法所需的插值,扩展和转换任务。程序是与商业三维可视化和建模软件EarthVision®和gOcad®一起实施的。算法专注于具有共同曲线地质特征的分布式三维数据的致密化和可变投影。各种插值和扩展功能的结果是将二维线转换为三维表面。 ud ud多项式和混合B样条插值技术可优化几何属性分量。自动化的数据驱动技术适用于地质问题,在这些地质问题中,结构受到局部线性和平面测量的约束。输入特征是相对连续的不规则曲面的地形相交,这些相交在沿结构的某些点具有近似线性的已知深度可预测性。沿地质结构的表面轨迹导出的局部方向余弦估计值将被插值,并且方向矢量线性投影到深度以形成局部结构表面或“色带”。该程序可用于将可变下降的折痕几何形状的某些部分描绘为结构带,从而在解释性折痕构造过程中充当视觉引导。给出了区域连续剪切带和脆性断层的理想化和实际实例,以及三维结构织物轨迹的开发,层位传播和深部边界几何评价。 ud ud基于知识驱动的半自动化技术交互式图形。一种解释性的或“设计”的表面构造方法应用于低密度数据集,而对于标准的全局自动插值而言,这些数据集稀疏。 Bézier曲线和曲面补丁被实现为解释性构造线,其遵循由结构定向数据施加的约束。程序铰链.awk,cast.awk,bspline.awk和bezpatch.awk从空间输入数据计算插值。三维构造线由与局部平面特征的切线和关键地质结构的投影定义。支持插值工具,程序trace.awk估计沿高程记录的三维曲线图轨迹的顶点的局部触角和倾角。平面解法可应用于高起伏地形,或从地下开采数据扩展三维曲线特征。 ud ud技术可用于低起伏且结构复杂的太古宙阿比提比绿岩带的现场数据。只要尊重数据并以给定的比例应用适当的方法,就可以从这些地形创建投机模型。现场组件着重于从地图中提取数据并优化三维图形编辑环境,以便在露头,矿山和区域尺度上更好地解释。 ud ud本研究中使用的应用技术包括: ud ud?三维结构符号系统:可视化的三维结构符号,代表层理点观察,线条和叶状织物; ud ud?结构归因:通过使用邻近滤镜将结构点观测值附加到线性特征。这是通过程序field.awk; ud ud?完成的。可变下垂投影:根据表面轨迹构造自定义下垂投影; ud ud?基于贝塞尔曲线的图形:具有基于贝塞尔曲线的交互式三维解释的示例; ud ud?混合曲面设计:采用Bézier面片和离散平滑插值(DSI)的二维地质曲面设计的两步方法,受地图轨迹和局部斜率的约束; ud ud?三维地图传播:一种使用二维地图数据和基于场的插入模型传播地图元素的方法。 ud ud研究结果表明,三维可视化的约束解释方法对于解释大型到小型的地质结构是有效的,即使数据库仅限于基于二维地图的信息。这种几何方法为提取的地质图信息,地表地形和结构数据以及地质“设计者”的直观知识的常规组合提供了初步的开发路径。上面列出并在本研究中介绍的已开发技术增强了野外地质学家创建复杂表面的可通信三维模型的能力。无论可视化技术的状态如何,三维地质建模的成功仍然取决于已知结构观测的数据密度,聚类和深度变化。最重要的也许是局部和区域结构与边界面之间的地质关系被建模。需要基于这些输入参数的新软件来评估地质模型的质量。

著录项

  • 作者

    DeKemp Eric Anthony;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号