首页> 外文OA文献 >Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells
【2h】

Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells

机译:锂离子电池中电化学循环石墨阳极的降解机理

摘要

This research is aimed at developing advanced characterization methods for studying the surface and subsurface damage in Li-ion battery anodes made of polycrystalline graphite and identifying the degradation mechanisms that cause loss of electrochemical capacity. Understanding microstructural aspects of the graphite electrode degradation mechanisms during charging and discharging of Li-ion batteries is of key importance in order to design durable anodes with high capacity. An in-situ system was constructed using an electrochemical cell with an observation window, a large depth-of-field digital microscope and a micro-Raman spectrometer. It was revealed that electrode damage by removal of the surface graphite fragments of 5-10 μm size is the most intense during the first cycle that led to a drastic capacity drop. Once a solid electrolyte interphase (SEI) layer covered the electrode surface, the rate of graphite particle loss decreased. Yet, a gradual loss of capacity continued by the formation of interlayer cracks adjacent to SEI/graphite interfaces. Deposition of co-intercalation compounds, LiC 6 , Li 2 CO 3 and Li 2 O, near the crack tips caused partial closure of propagating graphite cracks during cycling and reduced the crack growth rate. Bridging of crack faces by delaminated graphite layers also retarded crack propagation. The microstructure of the SEI layer, formed by electrochemical reduction of the ethylene carbonate based electrolyte, consisted of ∼5-20 nm sized crystalline domains (containing Li 2 CO 3 , Li 2 O 2 and nano-sized graphite fragments) dispersed in an amorphous matrix. During the SEI formation, two regimes of Li-ion diffusion were identified at the electrode/electrolyte interface depending on the applied voltage scan rate ( dV/dt ). A low Li-ion diffusion coefficient ( D Li + ) at dV/dt u3c 0.05 mVs -1 produced a tubular SEI that uniformly covered the graphite surface and prevented damage at 25°C. At 60°C, a high D Li + formed a Li 2 CO 3 -enriched SEI and ensued a 28% increase in the battery capacity at 25°C. On correlating the microscopic information to the electrochemical performance, novel Li 2 CO 3 -coated electrodes were fabricated that were durable. The SEI formed on pre-treated electrodes reduced the strain in the graphite lattice from 0.4% (for uncoated electrodes) to 0.1%, facilitated Li-ion diffusion and hence improved the capacity retention of Li-ion batteries during long-term cycling.
机译:这项研究旨在开发先进的表征方法,以研究由多晶石墨制成的锂离子电池阳极的表面和亚表面损伤,并确定引起电化学容量损失的降解机理。为了设计耐用的高容量阳极,了解锂离子电池充电和放电过程中石墨电极降解机理的微观结构至关重要。使用带有观察窗,大景深数字显微镜和显微拉曼光谱仪的电化学电池构建原位系统。结果表明,在第一个循环中,通过去除5-10μm大小的表面石墨碎片而造成的电极损坏最为严重,从而导致容量急剧下降。一旦固体电解质中间相(SEI)层覆盖了电极表面,石墨颗粒的损失率就会降低。然而,由于邻近SEI /石墨界面的层间裂纹的形成,容量的逐渐损失继续。在裂纹尖端附近沉积共嵌入化合物LiC 6,Li 2 CO 3和Li 2 O会导致循环中扩展的石墨裂纹部分封闭,并降低了裂纹的生长速率。分层的石墨层桥接裂纹面也阻碍了裂纹扩展。通过电化学还原碳酸亚乙酯基电解质形成的SEI层的微观结构由分散在非晶态中的〜5-20 nm大小的晶域(包含Li 2 CO 3,Li 2 O 2和纳米级石墨碎片)组成矩阵。在SEI形成过程中,根据施加的电压扫描速率(dV / dt),在电极/电解质界面处确定了两种锂离子扩散方式。在dV / dt u3c 0.05 mVs -1处的低Li离子扩散系数(D Li +)产生了管状SEI,该管状SEI均匀地覆盖了石墨表面并防止了25°C时的损坏。在60°C时,高D Li +会形成富含Li 2 CO 3的SEI,因此在25°C时电池容量会增加28%。通过将微观信息与电化学性能相关联,可以制造出耐用的新型Li 2 CO 3涂层电极。在预处理电极上形成的SEI将石墨晶格中的应变从0.4%(对于未镀膜的电极)降低到0.1%,促进了锂离子的扩散,因此改善了长期循环过程中锂离子电池的容量保持率。

著录项

  • 作者

    Bhattacharya Sandeep;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号