首页> 外文OA文献 >Distributed Self Fault Diagnosis in Wireless Sensor Networks using Statistical Methods
【2h】

Distributed Self Fault Diagnosis in Wireless Sensor Networks using Statistical Methods

机译:使用统计方法的无线传感器网络分布式自故障诊断

摘要

Wireless sensor networks (WSNs) are widely used in various real life applications where the sensor nodes are randomly deployed in hostile, human inaccessible and adversarial environments. One major research focus in wireless sensor networks in the past decades has been to diagnose the sensor nodes to identify their fault status. This helps to provide continuous service of the network despite the occurrence of failure due to environmental conditions. Some of the burning issues related to fault diagnosis in wireless sensor networks have been addressed in this thesis mainly focusing on improvement of diagnostic accuracy, reduction of communication overhead and latency, and robustness to erroneous data by using statistical methods. All the proposed algorithms are evaluated analytically and implemented in standard network simulator NS3 (version 3.19).ududA distributed self fault diagnosis algorithm using neighbor coordination (DSFDNC) is proposed to identify both hard and soft faulty sensor nodes in wireless sensor networks. The algorithm is distributed (runs in each sensor node), self diagnosable (each node identifies its fault status) and can diagnose the most common faults like stuck at zero, stuck at one, random data and hard faults. In this algorithm, each sensor node gathered the observed data from the neighbors and computes the mean to check the presence of faulty sensor node. If a node diagnoses a faulty sensor node in the neighbors, then it compares observed data with the data of the neighbors and predicts its probable fault status. The final fault status is determined by diffusing the fault information obtained from the neighbors. The accuracy and completeness of the algorithm are verified based on the statistical analysis over sensors data. The performance parameters such as diagnosis accuracy, false alarm rate, false positive rate, total number of message exchanges, energy consumption, network life time, and diagnosis latency of the DSFDNC algorithm are determined for different fault probabilities and average degrees and compared with existing distributed fault diagnosis algorithms.ududTo enhance the diagnosis accuracy, another self fault diagnosis algorithm is proposed based on hypothesis testing (DSFDHT) using the neighbor coordination approach. The Newman-Pearson hypothesis test is used to diagnose the soft fault status of each sensor node along with the neighbors. The algorithm can diagnose the faulty sensor node when the average degree of the network is less. The diagnosis accuracy, false alarm rate and false positive rate performance of the DSFDHT algorithm are improved over DSFDNC for sparse wireless sensor networks by keeping other performance parameters nearly same. The classical methods for fault finding using mean, median, majority voting and hypothesis testing are not suitable for large scale wireless sensor networks due to large devi- ation in transmitted data by faulty sensor nodes. Therefore, a modified three sigma edit test based self fault diagnosis algorithm (DSFD3SET) is proposed which diagnoses in an efficient manner over a large scale wireless sensor networks. The diagnosis accuracy, false alarm rate, and false positive rate of the proposed algorithm improve as compared to that of the DSFDNC and DSFDHT algorithms. The algorithm enhances the total number of message exchanges, energy consumption, network life time, and diagnosis latency, because the proposed algorithm needs less number of message exchanges over the algorithms such as DSFDNC and DSFDHT.udIn the DSFDNC, DSFDHT and DSFD3SET algorithms, the faulty sensor nodes are considered as soft faulty nodes which behave permanently. However in wireless sensor networks, the sensor nodes behave either fault free or faulty during different periods of time and are considered as intermittent faulty sensor nodes. Diagnosing intermittent faulty sensor nodes in wireless sensor networks is a challenging problem, because of inconsistent result patterns generated by the sensor nodes. The traditional distributed fault diagnosis (DIFD) algorithms consume more message exchanges to obtain the global fault status of the network. To optimize the number of message exchanges over the network, a self fault diagnosis algorithm is proposed here, which repeatedly conducts the self fault diagnosis procedure based on the modified three sigma edit test over a duration to identify the intermittent faulty sensor nodes. The algorithm needs less number of iterations to identify the intermittent faulty sensor nodes. The simulation results show that, the performance of the HISFD3SET algorithm improves in diagnosis accuracy, false alarm rate and false positive rate over the DIFD algorithmud
机译:无线传感器网络(WSN)广泛用于各种现实生活应用中,其中传感器节点随机部署在敌对,人类无法访问和对抗的环境中。过去几十年来,无线传感器网络的一项主要研究重点是诊断传感器节点以识别其故障状态。即使由于环境条件而发生故障,这也有助于提供网络的连续服务。本文主要解决了与无线传感器网络故障诊断相关的一些亟待解决的问题,重点是通过使用统计方法提高诊断准确性,减少通信开销和等待时间以及对错误数据的鲁棒性。所有提出的算法均经过分析评估,并在标准网络模拟器NS3(版本3.19)中实现。 ud ud提出了一种使用邻居协调(DSFDNC)的分布式自故障诊断算法,以识别无线传感器网络中的硬故障传感器和软故障传感器节点。该算法是分布式的(在每个传感器节点中运行),可自我诊断(每个节点标识其故障状态)并且可以诊断最常见的故障,例如卡在零,卡在一个,随机数据和硬故障。在该算法中,每个传感器节点从邻居那里收集观察到的数据,并计算平均值以检查故障传感器节点的存在。如果某个节点在邻居中诊断出故障的传感器节点,则它将观察到的数据与邻居的数据进行比较,并预测其可能的故障状态。通过扩散从邻居获得的故障信息来确定最终故障状态。基于对传感器数据的统计分析,验证了算法的准确性和完整性。针对不同的故障概率和平均程度,确定DSFDNC算法的诊断精度,误报率,误报率,报文交换总数,能耗,网络寿命和诊断等待时间等性能参数,并与现有的分布式算法进行比较。故障诊断算法。为了提高诊断的准确性,提出了另一种基于假设检验(DSFDHT)的,使用邻居协调方法的自故障诊断算法。 Newman-Pearson假设检验用于诊断每个传感器节点及其邻居的软故障状态。当网络的平均程度较小时,该算法可以诊断出故障的传感器节点。通过保持其他性能参数几乎相同,相对于稀疏无线传感器网络,DSFDHT算法的诊断准确性,误报率和误报率性能得到了提高。使用均值,中位数,多数投票和假设检验进行故障查找的经典方法不适用于大型无线传感器网络,因为故障传感器节点传输的数据存在较大偏差。因此,提出了一种改进的基于三西格玛编辑测试的自故障诊断算法(DSFD3SET),该算法可以在大规模无线传感器网络上高效地进行诊断。与DSFDNC和DSFDHT算法相比,该算法的诊断准确率,误报率和误报率均有所提高。该算法提高了消息交换的总数,能耗,网络寿命和诊断等待时间,因为相比于DSFDNC和DSFDHT等算法,该算法需要更少的消息交换次数。 ud在DSFDNC,DSFDHT和DSFD3SET算法中,故障传感器节点被认为是永久性行为的软故障节点。但是,在无线传感器网络中,传感器节点在不同时间段内表现为无故障或有故障,被视为间歇性故障传感器节点。由于传感器节点生成的结果模式不一致,因此在无线传感器网络中诊断间歇性故障传感器节点是一个具有挑战性的问题。传统的分布式故障诊断(DIFD)算法消耗更多的消息交换来获取网络的全局故障状态。为了优化网络上的消息交换数量,在此提出了一种自故障诊断算法,该算法基于修改后的3 sigma编辑测试在一段时间内重复执行自故障诊断过程,以识别间歇性故障传感器节点。该算法需要较少的迭代次数来识别间歇性故障传感器节点。仿真结果表明,与DIFD算法相比,HISFD3SET算法的性能提高了诊断准确性,误报率和误报率。

著录项

  • 作者

    Panda Meenakshi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号