首页> 外文OA文献 >Analysis of cooling capacity and optimization of compressor outlet pressure for KW class helium refrigerator/liquefier
【2h】

Analysis of cooling capacity and optimization of compressor outlet pressure for KW class helium refrigerator/liquefier

机译:KW级氦制冷机/液化器的制冷量分析和压缩机出口压力的优化

摘要

The main components of a helium liquefier determines the performance for a given compressor flow rate are Turbine, HE and JT valve. Turbine and JT valve produces cooling effect by isentropic and isenthalpic expansion. For each configuration main components can have different operating process parameters leading to different performance of HRL. This project involves the analysis and optimization of compressor outlet pressure for a given configuration. JT valve is at the lowest temperature to get the highest liquefaction which depends on the performance of other components so optimization of process parameter of JT valve is not considered here. One of the different cycle configurations is analyzed and is often used in HRL. This configuration, planned to use for the indigenous helium plant, has 3 turbines and 8 HE which produces liquid helium at 4.5 K. 1st and 2nd turbines operates at warmer temperature compared to 3rd and those are connected in series. Helium stream coming out of the 1st turbine passes to HE which will reduce its temperature before entering the 2nd turbine. Helium flow rate supplied by the compressor system is 210 g/s at 14 bar and 310 k. Effects of compressor flow rate and pressure on the cooling capacity of the plant have been analyzed. A part of this flow rate passes through a 1st and 2nd turbine for isentropic expansion to 1.2 bar and then this low pressure helium stream comes back to compressor suction through different HE to transfer cooling effect to the hot stream coming from the compressor. 3rd turbine will expand to 4 bar and this stream further passes through a HE before entering the JT valve for liquid helium production. This work involves different practical factors and in efficiencies of main components. The analysis result for flow of 140 g/s at 14 bars is further compared with the performance of existing helium plant at IPR which has same compressor flow parameter. The results are also compared with that of the aspen tech software.
机译:氦液化器的主要组件是确定给定压缩机流量的性能的涡轮机,HE和JT阀。涡轮和JT阀通过等熵和等焓膨胀产生冷却效果。对于每种配置,主要组件可以具有不同的操作过程参数,从而导致HRL的性能不同。该项目涉及针对给定配置的压缩机出口压力的分析和优化。 JT阀处于最低温度以获得最高液化度,这取决于其他组件的性能,因此此处不考虑JT阀工艺参数的优化。分析了不同的循环配置之一,并经常在HRL中使用它。该配置计划用于本地氦厂,具有3个涡轮机和8个HE,可产生4.5 K的液氦。与第3个涡轮机相比,第1和第2涡轮机的运行温度更高,并且串联连接。从第一个涡轮机出来的氦气流向HE,HE将在进入第二个涡轮机之前降低其温度。压缩机系统提供的氦气流量在14 bar和310 k时为210 g / s。分析了压缩机流量和压力对设备冷却能力的影响。该流量的一部分通过第一和第二涡轮进行等熵膨胀至1.2 bar,然后该低压氦流通过不同的HE返回到压缩机吸入,从而将冷却效果传递给来自压缩机的热流。第3台涡轮机将膨胀至4 bar,并且该物流进一步流经HE,然后进入JT阀生产液氦。这项工作涉及不同的实际因素和主要组件的效率。将14 bar下140 g / s流量的分析结果与具有相同压缩机流量参数的IPR下现有氦装置的性能进行了比较。还将结果与aspen技术软件的结果进行比较。

著录项

  • 作者

    Jadhav N;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号