首页> 外文OA文献 >Intelligent Diagnosis and Smart Detection of Crack in a Structure from its Vibration Signatures
【2h】

Intelligent Diagnosis and Smart Detection of Crack in a Structure from its Vibration Signatures

机译:基于振动特征的结构裂缝智能诊断和智能检测

摘要

In recent years, there has been a growing interest in the development of structural health monitoring for vibrating structures, especially crack detection methodologies and on-line diagnostic techniques. In the current research, methodologies have been developed for damage detection of a cracked cantilever beam using analytical, fuzzy logic, neural network and fuzzy neuro techniques. The presence of a crack in a structural member introduces a local flexibility that affects its dynamic response. For finding out the deviation in the vibrating signatures of the cracked cantilever beam the local stiffness matrices are taken into account. Theoretical analyses have been carried out to calculate the natural frequencies and mode shapes of the cracked cantilever beam using local stiffness matrices. Strain energy release rate has been used for calculating the local stiffness of the beam. The fuzzy inference system has been designed using the first three relative natural frequencies and mode shapes as input parameters. The output from the fuzzy controller is relative crack location and relative crack depth. Several fuzzy rules have been developed using the vibration signatures of the cantilever beam. A Neural Network technique using multi layered back propagation algorithm has been developed for damage assessment using the first three relative natural frequencies and mode shapes as input parameters and relative crack location and relative crack depth as output parameters. Several training patterns are derived for designing the Neural Network. A hybrid fuzzy-neuro intelligent system has been formulated for fault identification. udThe fuzzy controller is designed with six input parameters and two output parameters. The input parameters to the fuzzy system are relative deviation of first three natural frequencies and first three mode shapes. The output parameters of the fuzzy system are initial relative crack depth and initial relative crack location. The input parameters to the neural controller are relative deviation of first three natural frequencies and first three mode shapes along with the interim outputs of fuzzy controller. The output parameters of the fuzzy-neuro system are final relative crack depth and final relative crack location. A series of fuzzy rules and training patterns are derived for the fuzzy and neural system respectively to predict the final crack location and final crack depth.To diagnose the crack in the vibrating structure multiple adaptive neuro-fuzzy inference system (MANFIS) methodology has been applied. The final outputs of the MANFIS are relative crack depth and relative crack location. Several hundred fuzzy rules and neural network training patterns are derived using natural frequencies, mode shapes, crack depths and crack locations.udThe proposed research work aims to broaden the development in the area of fault detection of dynamically vibrating structures. This research also addresses the accuracy for detection of crack location and depth with considerably low computational time. The objective of the research is related to design of an intelligent controller for prediction of damage location and severity in a uniform cracked cantilever beam using AI techniques (i.e. Fuzzy, neural, adaptive neuro-fuzzy and Manfis).ud
机译:近年来,人们对振动结构的结构健康监测的发展越来越感兴趣,尤其是裂缝检测方法和在线诊断技术。在当前的研究中,已经开发出了使用分析,模糊逻辑,神经网络和模糊神经技术来检测破裂悬臂梁的损伤的方法。结构构件中裂纹的出现会引入局部柔韧性,从而影响其动态响应。为了找出开裂的悬臂梁的振动特征的偏差,考虑了局部刚度矩阵。已经进行了理论分析,以使用局部刚度矩阵计算开裂的悬臂梁的固有频率和模态形状。应变能释放率已用于计算梁的局部刚度。使用前三个相对固有频率和模式形状作为输入参数来设计模糊推理系统。模糊控制器的输出是相对裂纹位置和相对裂纹深度。利用悬臂梁的振动信号已经开发了几种模糊规则。已经开发出一种使用多层反向传播算法的神经网络技术,用于将前三个相对固有频率和模式形状作为输入参数,并将相对裂纹位置和相对裂纹深度作为输出参数进行损伤评估。为了设计神经网络,导出了几种训练模式。提出了一种混合式模糊神经智能系统,用于故障识别。 ud模糊控制器设计有六个输入参数和两个输出参数。模糊系统的输入参数是前三个固有频率和前三个模式形状的相对偏差。模糊系统的输出参数是初始相对裂纹深度和初始相对裂纹位置。神经控制器的输入参数是前三个固有频率和前三个模式形状的相对偏差以及模糊控制器的中间输出。模糊神经系统的输出参数是最终相对裂纹深度和最终相对裂纹位置。推导了模糊和神经系统的一系列模糊规则和训练模式,以预测最终的裂纹位置和最终的裂纹深度。为诊断振动结构中的裂纹,采用了多种自适应神经模糊推理系统(MANFIS)方法。 MANFIS的最终输出是相对裂纹深度和相对裂纹位置。利用自然频率,模态形状,裂纹深度和裂纹位置导出了数百个模糊规则和神经网络训练模式。 ud本文的研究工作旨在拓宽动态振动结构故障检测领域的发展。这项研究还以较低的计算时间解决了裂纹位置和深度检测的准确性。研究的目的与智能控制器的设计有关,该智能控制器使用AI技术(即模糊,神经,自适应神经模糊和Manfis)来预测均匀破裂的悬臂梁中的损伤位置和严重程度。

著录项

  • 作者

    Das Harish Chandra;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号