首页> 外文OA文献 >Thermisch-hydraulische Simulationen zur Optimierung von Vereisungsmaßnahmen im Tunnelbau unter Einfluss einer Grundwasserströmung
【2h】

Thermisch-hydraulische Simulationen zur Optimierung von Vereisungsmaßnahmen im Tunnelbau unter Einfluss einer Grundwasserströmung

机译:热工水力模拟优化地下水流影响下隧道施工的结冰措施

摘要

The ground freezing method has recently been given a boost as a versatile technique to provide artificially frozen ground as impervious and bearing support structures for tunneling applications. Excavation can proceed safely inside the frozen ground structure until the final lining provides permanent support. In contrast to grouting works the freezing method is completely reversible and has no significant environmental impact. Ground freezing is not limited by adverse ground conditions and may be used in almost any soil formation, regardless of structure and grain size. The excavation of cross-passages and the widening of shield-driven tunnel cross-sections to build underground stations are main fields of application. However, often the alleged high costs for the supply of energy are the exclusion criterion for a systematic and scheduled application of the method. The optimization of ground freezing projects requires a reliable prediction of frost propagation as vital design criterion. Existing groundwater flow is the crucial factor and major thermal load that requires intensive consideration for a safe and cost-effective freezing project. Due to the temperature-dependent behaviour of frozen soil, the latent heat released at phase change and the thermal impact of flowing water the analytical approaches known so far for the design of frozen support structures can only inadequately assess the complex phenomena. Only numerical simulations can provide solutions to the coupled heat flow-groundwater problem but are not easily applicable in the majority of cases. Within this thesis the Finite Difference Program SHEMAT (Simulator for Heat and Mass Transfer) is further developed to provide a practical, numerical analysis tool to predict frost propagation of ground freezing projects that are subject to groundwater flow. The main focus lies on sufficiently accurate determination of freezing times based on a few geotechnical parameters only. For this purpose a simplified phase change model is set up to describe the freezing process in fully saturated soils. The unfrozen water content is used as main variable of the freezing stage and allows deriving thermal properties of the soil, namely thermal conductivity and thermal capacity, by mathematical models. By means of experiments it is shown, that the unfrozen water content can be derived from the grain size curve with a high degree of accuracy in case of non-cohesive soils. The numerical model is verified by an analytical approach of frost propagation and by recalculation of two model experiments. The reanalysis of a real ground freezing project shows good results and reveals the essential demand to know the flow conditions on site for reliable calculations. Using the example of the freezing of a cross passage flow-adapted freeze pipe arrangements and optimized operating modes of the cooling units are presented to achieve considerable cost saving potentials. It becomes obvious that the freezing time increases exponentially with flow velocity and different designs may become advantageous for different velocities. Even without additional installation of freeze pipes the freezing time can be reduced by 20% using flow adapted freeze pipe arrangements. Additional freeze pipes on the critical upstream side can reduce freezing times by almost 50%. The most advantageous reduction is achieved by precooling the groundwater by positioning pipes in the upstream. Moreover, the operating mode can be modified by the assembly of pipe groups with respect to their specific thermal impact of the groundwater flow. As a consequence the energy supply can be reduced by selectively charging these groups. The simplified, numerical model presented in this thesis provides opportunities to optimize future ground freezing applications subject to groundwater flow.
机译:地面冻结方法近来得到了发展,成为一种通用技术,可为隧道应用提供人工冻结的地面作为不透水和承重的支撑结构。开挖可以在结冰的地面结构内安全进行,直到最终衬砌提供永久支撑为止。与灌浆相比,冻结方法是完全可逆的,对环境没有明显影响。地面冻结不受不利地面条件的限制,几乎可以用于任何土壤形成中,无论结构和粒度如何。交叉通道的开挖和盾构驱动的隧道横截面的拓宽以建造地下车站是主要的应用领域。但是,通常所称的能源供应高昂费用是对该方法进行系统和计划应用的排除标准。地面冻结项目的优化需要霜冻传播的可靠预测作为重要的设计准则。现有的地下水流量是关键因素和主要的热负荷,需要对安全和经济有效的冷冻项目进行深入考虑。由于冻结土壤的温度相关行为,相变时释放的潜热以及流动水的热影响,迄今为止已知的用于冻结支撑结构设计的分析方法只能不足以评估复杂现象。只有数值模拟可以为耦合的热流-地下水问题提供解决方案,但在大多数情况下不容易应用。在本文中,进一步开发了有限差分程序SHEMAT(传热传质仿真器),以提供一种实用的数值分析工具来预测受地下水流量影响的地面冻结项目的霜冻扩散。主要重点在于仅基于一些岩土参数就可以足够准确地确定冻结时间。为此目的,建立了一个简化的相变模型来描述完全饱和土壤中的冷冻过程。未冷冻的水含量被用作冷冻阶段的主要变量,并允许通过数学模型推导土壤的热特性,即热导率和热容量。通过实验表明,在非粘性土壤的情况下,未冻结的水分含量可以高精度地从粒度曲线得出。通过霜冻传播的分析方法和两个模型实验的重新计算来验证该数值模型。对真实的地面冻结项目的重新分析显示出良好的结果,并且揭示了了解现场流量条件以进行可靠计算的基本要求。以交叉通道流动的冷冻管的冷冻为例,提出了冷却单元的优化运行模式,以实现可观的成本节约潜力。显而易见的是,冷冻时间随流速成指数增加,并且不同的设计对于不同的速度可能变得有利。即使不另外安装冷冻管,使用流量自适应的冷冻管装置也可以将冷冻时间减少20%。在关键的上游侧增加冷冻管可以将冷冻时间减少近50%。最有利的减少是通过在上游放置管道来预冷地下水而实现的。此外,可以通过组装管组来改变其运行方式,以解决其对地下水流的特定热影响。结果,可以通过选择性地给这些组充电来减少能量供应。本文提出的简化的数值模型为优化未来受地下水流量影响的地面冻结应用提供了机会。

著录项

  • 作者

    Baier Christian;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号