首页> 外文OA文献 >Transport theory through single molecules : Jahn-Teller effect: breakdown of Born-Oppenheimer picture and adiabatic time-dependent driving out of equilibrium
【2h】

Transport theory through single molecules : Jahn-Teller effect: breakdown of Born-Oppenheimer picture and adiabatic time-dependent driving out of equilibrium

机译:通过单分子的传输理论:贾恩-泰勒效应:玻恩-奥本海默图的分解和绝热时间相关的不平衡驱动

摘要

In this thesis, we theoretically investigate the interplay of the vibrational, charge and spin degrees of freedom characteristic of complex dimer molecules. The influence of the pseudo Jahn-Teller effect, well known in molecular chemistry, is investigated in the new situation where an electric current is driven through a molecule. Furthermore, we present a new theory to describe time-dependent adiabatic transport through such type of molecular quantum dot systems, accounting for strong intra-molecular interactions, adiabatic driving and non-equilibrium bias. Based on this, we propose a new tool for spectroscopy of such complex quantum dots using the periodic modulation of external electric fields. A molecular quantum dot device consists of a quantum dot or single molecule connected to two metallic contacts such that a current can be driven through the system. One reason for the great experimental as well as theoretical interest in such devices is the hope to make the next step in the miniaturization of informational technology devices, since molecules are only a few nanometers small. Besides the aspect of size reduction, molecules exhibit a rich spectrum of quantized degrees of freedom such as charge, vibrations and spin. These and even their interplay can be used to manipulate the charge flow through the device. At present, the purpose of experiments and theories is to understand how such molecular quantum dot systems behave in transport setups. Experiments need to overcome the difficulties in attaching nanometer-sized systems to macroscopic metallic leads in a controllable and reproducible way. Here, theory can provide crucial clues about the origin of observed features in the current and to predict how special, intrinsic properties of the studied molecule influence the transport current in a particular way. This motivates the study undertaken in this thesis. We develop a theory which allows us to describe the transport current through such systems in the presence of non-equilibrium bias and even time-dependent modulations of externally controllable parameters. The driving of the latter induces a retarded response of the molecule, which crucially depends on the characteristic details of the molecule and its coupling to the leads and can therefore be used e.g. as a spectroscopic tool. The method used and further developed in this thesis is the generalized master or kinetic equation approach for the reduced density operator of the dot, explicitly eliminating the degrees of freedom in the metallic leads to which it is weakly coupled. In comparison to other approaches, it has several advantages. For instance, interactions on the dot are taken into account non-perturbatively. Apart from electron-electron interaction, also non-trivial electron-vibration interaction (e.g., anharmonic and (pseudo) Jahn-Teller coupling) is correctly treated, which is very hard to do otherwise. Furthermore, the method goes beyond the linear response, which is mandatory since the experimentally applied electric fields can drive the system far from equilibrium. The coupling to the leads is taken into account using a systematic expansion in the tunnel amplitudes using the real-time diagrammatic approach combined with the technique of Liouville superoperators. This yields general yet compact expressions for the contributions of the expansion. One of the major theoretical advances made in this work is the explicit generalization of this transport theory to adiabatically slow modulations of external parameters for arbitrary molecular models. To this end, we perform a systematic "adiabatic expansion" of the transport rates in orders of the modulation frequency. We present diagram rules to write down the transport kernels and show that the resulting integral expressions can be obtained by additional rules from those already known from the stationary case. This transport theory is then applied to two specific molecular models. First, we consider a rather complex model of a dimer molecule and calculate the transport current through this system in the absence of time-dependent modulations. In particular, we investigate the influence of the interplay of vibrational, charge and, if the molecule exhibits a finite spin moment, spin degrees of freedom on the transport current. We show that this interplay leads to characteristic fingerprints in the current, from which one can extract valuable information about the molecular device, and even allows us to control molecular properties. Recently, some of these predicted results have also been confirmed experimentally. In a second system we consider only a single electronic level but allow for adiabatically slow time-dependent modulations of the applied electric fields. We show that the corrections due to the system's retardation carry valuable information about the molecular device and propose a new spectroscopic tool for transport through devices on the nanometer scale.
机译:在本文中,我们从理论上研究了复杂二聚体分子的振动,电荷和自旋自由度的相互作用。在分子驱动电流的新情况下,研究了分子化学中众所周知的拟Jahn-Teller效应的影响。此外,我们提出了一种新的理论来描述通过这种类型的分子量子点系统的时间依赖性绝热传输,这说明了强分子内相互作用,绝热驱动和非平衡偏置。基于此,我们提出了一种使用外部电场的周期性调制来对这种复杂量子点进行光谱分析的新工具。分子量子点设备由连接至两个金属触点的量子点或单个分子组成,因此可以驱动电流通过系统。对此类设备的巨大实验兴趣和理论兴趣的一个原因是希望使信息技术设备的小型化迈出下一步,因为分子只有几纳米小。除了减小尺寸外,分子还具有丰富的量化自由度谱,例如电荷,振动和自旋。这些以及它们之间的相互作用可用于操纵通过设备的电荷流。目前,实验和理论的目的是了解这种分子量子点系统在传输设置中的行为。实验需要克服将纳米尺寸的系统以可控制和可复制的方式连接到宏观金属引线上的困难。在这里,理论可以提供有关电流中观察到的特征起源的关键线索,并可以预测所研究分子的特殊内在特性如何以特定方式影响运输电流。这激励了本文的研究。我们开发了一种理论,该理论使我们能够描述在外部可控参数存在非平衡偏置甚至时间相关调制的情况下通过此类系统的传输电流。后者的驱动引起分子的迟滞反应,这主要取决于分子的特征细节及其与导线的偶联,因此可以例如用于分子筛。作为光谱工具。本文使用和进一步发展的方法是针对点的密度降低算符的广义主方程或动力学方程方法,明确消除了与之弱耦合的金属引线中的自由度。与其他方法相比,它具有多个优点。例如,非干扰地考虑了点上的交互。除了电子-电子相互作用之外,还必须正确地处理非平凡的电子-振动相互作用(例如,非谐和(伪)Jahn-Teller耦合),否则很难做到这一点。此外,该方法超越了线性响应,线性响应是强制性的,因为实验施加的电场可以使系统远离平衡状态。通过使用实时图解方法结合Liouville超级算子技术,在隧道振幅中进行系统性扩展,可以考虑与导线的耦合。对于扩展的贡献,这产生了通用而紧凑的表达式。在这项工作中取得的主要理论进展之一是对该输运理论的明确概括,以绝热的方式对任意分子模型的外部参数进行了缓慢的调制。为此,我们按调制频率的顺序对传输速率进行系统的“绝热扩展”。我们提出了图表规则来记下传输内核,并表明可以通过附加规则从固定情况下已知的那些规则中获得结果积分表达式。然后将这种运输理论应用于两个特定的分子模型。首先,我们考虑一个非常复杂的二聚体分子模型,并在不存在依赖于时间的调制的情况下计算通过该系统的传输电流。特别是,我们研究了振动,电荷相互作用的影响,如果分子表现出有限的自旋矩,则自旋自由度对传输电流产生影响。我们证明了这种相互作用会导致当前的特征指纹,从中可以提取有关分子装置的有价值的信息,甚至可以控制分子的性质。最近,一些预测结果也已通过实验得到证实。在第二个系统中,我们仅考虑单个电子电平,但允许对施加的电场进行绝热的时间依赖性的慢速调制。我们表明,由于系统的延迟而进行的校正携带了有关分子装置的宝贵信息,并提出了一种新的光谱学工具,用于通过纳米级的装置进行传输。

著录项

  • 作者

    Reckermann Felix;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号