首页> 外文OA文献 >Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen
【2h】

Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen

机译:相变材料的光学特性,适合未来的光学和电子存储应用

摘要

Phase Change Materials offer a unique combination of physical properties, thus they yield successful applications. They are used in re-writable optical data storage and will be in the near future also used in electrical data storage. The alloys, employed up to now in optical data storage are developed empirically. For future applications, especially electrical data storage, it will be important to have design rules to tailor certain physical properties of phase change materials. To find these, a basic knowledge of the characteristic properties of phase change materials is necessary. In this work the optical properties of the amorphous and crystalline phases play a crucial role. Optical properties contain information about the chemical bonding and even about electrical transport parameters. If free carrier have enough influence on the optical properties, the conductivity can be calculated. Additionally, for large Drude relaxation times, this parameter itself, the quotient of the carrier concentration and the effective mass as well as the product of the mobility and the effective mass can be calculated. If the relaxation times are too small, it is still possible to calculate bounds for these transport parameters. The optical properties were measured with FTIR spectroscopy in the infrared and spectroscopic ellipsometry in the visible region in combination with metallic reflectors. The comparison of optical, electrical and structural properties will lead to deeper insight into the physics of phase change materials. The analysis of the polarisability of different phase change materials show that the optical properties of amorphous systems can be described very well depending on the density and the stoichiometry. The polarisability of crystalline systems is remarkable high, thus the chemical bonding must have been changed upon crystallisation. After crystallisation, the increase of middle range order in the system cause the formation of resonant bonds, additionally to covalent bonds, which are ordinary for known semiconductors. Resonant bonds arise, when there are more bonds (six in the rock salt structure) than allowed, following the 8-N rule (three p-electrons). Crystalline phase change materials usually have conductivities over 10 S/cm, free carriers strongly influence the FTIR spectrum. They can be described within the Drude model. Both, the analysis of the optical spectra and electrical measurements result in conductivities of the same order of magnitude. This and the extremely short Drude relaxation times lead to the assumption, that the scattering mechanism cannot be explained by grain boundaries, but a microscopic material property. Carrier concentrations are only few orders of magnitude below those of metals. This is a first hint, that crystalline phase change materials are degenerated semiconductors. With gold as metallic reflector, diffusion and reaction processes were confirmed. This has a marginal influence of the optical properties, thus silicon substrates or aluminum reflectors were used afterwards. Some crystalline phase change materials, for example GeSbTe alloys, show a decrease of the resistivity upon annealing of two orders of magnitude without changing the structure. Other phase change materials, like GeTe, do not show this effect. This important and interesting effect was investigated with different methods. For crystalline phase change materials optical properties and electrical properties show similar dependencies on the annealing temperatures. FTIR spectra of crystalline Ge1Sb2Te4 or Ge2Sb2Te5 show a systematic trend in the Drude term upon annealing, as well as in the interband transitions. Thus, a change of the electrical transport parameters goes along with a change of resonant bonding. Hence, the knowledge of the chemical bonding helps describing electrical transport of phase change materials. In crystalline GeTe both the spectra and the electrical properties are independent of the annealing conditions. Furthermore, amorphous systems were investigated upon annealing. Structural relaxation processes are accelerated upon annealing, because energy barriers have to be overcome and this process is thermally activated. FTIR spectra show an increase of the band gap upon annealing. So the standard transport model provide an opportunity to explain drift. This phenomenon is an increase of the resistivity with time in amorphous phase change materials. Additionally optical measurements at a semi-crystalline GeTe thin film in combination with structural, calorimetric and electrical measurements give information about the heterogeneous crystal growth mechanism. With the aid of a cryostat, FTIR measurements can be performed temperature-dependent in the range of 5-350 K. Because structural changes of the film can be excluded, a purely electronic effect was measured. The temperature-dependency of the bandgap is clearly larger in amorphous systems in comparison to crystalline systems. Among each other these dependencies are rather similar. The knowledge of the temperature-dependency of the bandgap is important for simulations of the temperature-dependent conductivity plus the interpretation of Seebeck- or MPC (modulated photocurrent) data. Furthermore, there is no freeze out of free carriers at 5 K. Materials, where transport parameters could be determined exactly, show temperature-dependencies of the conductivity and other transport parameters similar to metals or degenerated semiconductors, respectively.
机译:相变材料提供了物理特性的独特组合,因此可以成功应用。它们用于可重写光学数据存储中,并且在不久的将来还将用于电子数据存储中。凭经验开发了迄今为止在光学数据存储中使用的合金。对于未来的应用,尤其是电气数据存储,拥有设计规则以定制相变材料的某些物理特性将很重要。为了找到这些,必须具有相变材料的特性的基本知识。在这项工作中,非晶相和结晶相的光学性质起着至关重要的作用。光学性质包含有关化学键甚至电气传输参数的信息。如果自由载体对光学性能有足够的影响,则可以计算出电导率。另外,对于大的Drude弛豫时间,可以计算出此参数本身,载流子浓度与有效质量的商以及迁移率与有效质量的乘积。如果弛豫时间太短,仍然有可能计算这些传输参数的界限。光学性质是通过红外的FTIR光谱和结合金属反射镜的可见光椭圆光谱法在可见光区域测量的。光学,电学和结构性质的比较将使人们对相变材料的物理学有更深入的了解。对不同相变材料的极化率的分析表明,取决于密度和化学计量,非晶态系统的光学性质可以很好地描述。晶体系统的可极化性极高,因此在结晶时必须改变化学键。结晶后,系统中中间阶次的增加会导致形成共价键和共价键,这对于已知的半导体是很常见的。当遵循8-N规则(三个p电子)而存在的键数(岩盐结构中的六个)多于允许值时,就会出现共振键。结晶相变材料的电导率通​​常超过10 S / cm,自由载流子会强烈影响FTIR光谱。它们可以在Drude模型中描述。光谱分析和电学测量两者都导致相同数量级的电导率。这种和极短的德鲁德弛豫时间导致这样的假设,即散射机理不能用晶界来解释,而不能用微观的材料性质来解释。载流子浓度仅比金属浓度低几个数量级。这是第一个暗示,即晶体相变材料是退化的半导体。用金作为金属反射体,证实了扩散和反应过程。这对光学性能的影响很小,因此后来使用了硅基板或铝反射镜。一些结晶相变材料,例如GeSbTe合金,在退火两个数量级时显示出电阻率降低,而没有改变结构。其他相变材料(例如GeTe)没有显示这种效果。使用不同的方法研究了这一重要而有趣的效果。对于结晶相变材料,光学性能和电性能对退火温度显示出相似的依赖性。晶体Ge1Sb2Te4或Ge2Sb2Te5的FTIR光谱在退火后的Drude项以及带间跃迁中显示出系统的趋势。因此,电传输参数的改变与谐振键合的改变一起进行。因此,化学键的知识有助于描述相变材料的电传输。在晶体GeTe中,光谱和电性能均与退火条件无关。此外,对非晶态体系进行了退火研究。退火后会加快结构弛豫过程,因为必须克服能垒,并且该过程会被热激活。 FTIR光谱显示退火后带隙增加。因此,标准运输模型提供了解释漂移的机会。这种现象是非晶相变材料中电阻率随时间的增加。另外,在半结晶GeTe薄膜上进行的光学测量与结构,量热和电学测量相结合,可提供有关异质晶体生长机理的信息。借助低温恒温器,FTIR测量可以在5-350 K的范围内随温度而变。因为可以排除薄膜的结构变化,测量了纯电子效应。与结晶体系相比,非晶体系中带隙的温度依赖性明显更大。它们之间的依赖性非常相似。带隙的温度依赖性知识对于模拟温度依赖性电导率以及塞贝克(Seebeck)或MPC(调制光电流)数据的解释非常重要。此外,在5 K下没有自由载流子冻结。可以精确确定传输参数的材料分别显示出电导率和其他传输参数的温度相关性,分别类似于金属或退化的半导体。

著录项

  • 作者

    Kremers Stephan;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号