首页> 外文OA文献 >Lithiumbatterien für stationäre und mobile Anwendungen : Benchmarking und experimentelle Umsetzung
【2h】

Lithiumbatterien für stationäre und mobile Anwendungen : Benchmarking und experimentelle Umsetzung

机译:固定和移动应用的锂电池:基准测试和实验实施

摘要

In order to reduce the anthropogenic greenhouse gas emission, a conversion of the electric energy supply towards renewable energies is mandatory. Therefore it is necessary to introduce novel electrochemical energy storages. The development of a model which evaluates the application specific potential of lithium batteries and their components is the goal of this work. Additionally, the most promising research areas are to be derived and experimentally validated. The work approach is based on the derivation of a benchmarking model, which enables an evaluation of anodes, cathodes, electrolytes and passive components used in lithium batteries for battery and hybrid electric vehicles as well as a stationary photovoltaic battery system. Based on an extensive literature study, limiting and accessible characteristics for the requirements: energy density, power density, safety, lifetime, costs and raw materials are defined for the different components. They build the fundament of the following benchmarking process. The developed benchmarking model enables a systematic, quantitative and application specific evaluation of the considered components. Thus, the poor safety characteristics together with a comparably low volumetric energy density make sulfur cathodes unsuitable for all contemplated applications. Lithium and tin anodes as well as the Co and Ni based cathodes: LiCoO2, LiNiO2, LiNi0,8Co0,15Al0,05O2 and LiNi0,33Mn0,33Co0,33O2 cannot be used as well, due to their insufficient safety properties. The anode material Li4Ti5O12 is inapplicable in stationary systems because of its low cost and reserve evaluation factors. Organic respectively inorganic solid state electrolytes have a low ionic conductivity respectively a comparably high contact resistance during cycling. They are therefore not suited to be used in large scaled cells for the considered applications. An increase of the energy density of state of the art systems for battery electric vehicles by 100% is possible in cells based on silicon anodes together with high-capacity or high-voltage cathodes. Substitution of silicon with carbon anodes decreases the energy density, but increases the lifetime evaluation of resulting cells considerably. Cell concepts based on LiFePO4 and Li4Ti5O12 promise a high power density in combination with a high safety and lifetime evaluation. They are therefore interesting candidates for batteries in hybrid electric vehicles. The application of TiO2 anodes with LiFePO4 cathodes in lifetime, raw material and cost optimized cells is most interesting for stationary systems. The degradation process of conventional organic carbonate based electrolytes with high-voltage cathodes has not been completely understood, yet. Based on the experimental evaluation of a derived aging model, it is possible to show that the oxidation of the electrolyte has to be considered, if it is unstable against the cathode potential. The process has diffusion controlled kinetics and occurs even after the formation of the initial surface layers on the electrode. The utilization of electrolytes which are stable at high anodic potentials are suitable to increase both safety and lifetime of cells with high-voltage cathodes. The characterization of electrolytes based on novel ionic liquids with a 5 cyanotetrazolide anion enables their evaluation according to the derived benchmarking model. Thus, the electrolyte class offers comparably high power densities, safety evaluation factors and a sufficient anodic stability window for the application with high-voltage cathodes.
机译:为了减少人为温室气体的排放,必须将电能供应转换为可再生能源。因此,有必要引入新颖的电化学储能器。这项工作的目标是开发一种评估锂电池及其组件的特定应用潜力的模型。另外,最有前途的研究领域将得到衍生和实验验证。该工作方法基于基准模型的推导,该模型可以评估用于电池和混合动力电动汽车的锂电池以及固定式光伏电池系统中的阳极,阴极,电解质和无源组件。根据广泛的文献研究,对要求的限制和可访问特性:为不同组件定义了能量密度,功率密度,安全性,寿命,成本和原材料。他们为以下基准测试流程奠定了基础。开发的基准模型可以对所考虑的组件进行系统,定量和针对特定应用的评估。因此,不良的安全特性以及相对较低的体积能量密度使得硫阴极不适用于所有预期的应用。锂和锡阳极以及钴和镍基阴极:LiCoO2,LiNiO2,LiNi0,8Co0,15Al0,05O2和LiNi0,33Mn0,33Co0,33O2也由于其安全性不足而不能使用。负极材料Li4Ti5O12由于其低成本和储备评估因素而不适用于固定系统。有机的或无机的固态电解质在循环期间具有低的离子电导率或相对较高的接触电阻。因此,它们不适用于所考虑的应用的大型单元。在基于硅阳极以及高容量或高电压阴极的电池中,电池电动汽车的最新系统的能量密度可以增加100%。用碳阳极代替硅会降低能量密度,但会大大提高所得电池的使用寿命。基于LiFePO4和Li4Ti5O12的电池概念具有很高的功率密度,并具有很高的安全性和寿命评估。因此,它们是混合动力汽车中电池的有趣候选者。 TiO2阳极与LiFePO4阴极在寿命,原材料和成本优化电池中的应用对于固定系统最为有趣。尚未完全了解具有高压阴极的常规有机碳酸酯基电解质的降解过程。基于导出的老化模型的实验评估,有可能表明,如果电解质对阴极电势不稳定,则必须考虑电解质的氧化。该过程具有扩散受控的动力学,并且甚至在电极上形成初始表面层之后也发生。利用在高阳极电势下稳定的电解质适合于增加具有高压阴极的电池的安全性和寿命。基于具有5个氰基四唑阴离子的新型离子液体对电解质的表征,可以根据导出的基准模型对其进行评估。因此,电解质类别为高压阴极的应用提供了相对较高的功率密度,安全性评估因子和足够的阳极稳定性窗口。

著录项

  • 作者

    Bergholz Timm;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号