首页> 外文OA文献 >PIEZOELECTRIC ACTUATOR DESIGN OPTIMISATION FOR SHAPE CONTROL OF SMART COMPOSITE PLATE STRUCTURES
【2h】

PIEZOELECTRIC ACTUATOR DESIGN OPTIMISATION FOR SHAPE CONTROL OF SMART COMPOSITE PLATE STRUCTURES

机译:智能复合板结构形状控制的压电致动器设计优化

摘要

Shape control of a structure with distributed piezoelectric actuators can be achieved through optimally selecting the loci, shapes and sizes of the piezoelectric actuators and choosing the electric fields applied to the actuators. Shape control can be categorised as either static or dynamic shape control. Whether it is a transient or gradual change, static or dynamic shape control, both aim to determine the loci, sizes, and shapes of piezoelectric actuators, and the applied voltages such that a desired structural shape is achieved effectively. This thesis is primarily concerned with establishing a finite element formulation for the general smart laminated composite plate structure, which is capable to analyse static and dynamic deformation using non-rectangular elements. The mechanical deformation of the smart composite plate is modelled using a third order plate theory, while the electric field is simulated based on a layer-wise theory. The finite element formulation for static and dynamics analysis is verified by comparing with available numerical results. Selected experiments have also been conducted to measure structural deformation and the experimental results are used to correlate with those of the finite element formulation for static analysis. In addition, the Linear Least Square (LLS) method is employed to study the effect of different piezoelectric actuator patch pattern on the results of error function, which is the least square error between the calculated and desired structural shapes in static structural shape control. The second issue of this thesis deals with piezoelectric actuator design optimisation (PADO) for quasi-static shape control by finding the applied voltage and the configuration of piezoelectric actuator patch to minimise error function, whereas the piezoelectric actuator configuration is defined based on the optimisation technique of altering nodal coordinates (size/shape optimisation) or eliminating inefficient elements in a structural mesh (topology optimisation). Several shape control algorithms are developed to improve the structural shape control by reducing the error function. Further development of the GA-based voltage and piezoelectric actuator design optimisation method includes the constraint handling, where the error function can be optimised subjected to energy consumption or other way around. The numerical examples are presented in order to verify that the proposed algorithms are applicable to quasi-static shape control based on voltage and piezoelectric actuator design optimisation (PADO) in terms of minimising the error function. The third issue is to use the present finite element formulation for a modal shape control and for controlling resonant vibration of smart composite plate structures. The controlled resonant vibration formulation is developed. Modal analysis and LLS methods are also employed to optimise the applied voltage to piezoelectric actuators for achieving the modal shapes. The Newmark direct time integration method is used to study harmonic excitation of smart structures. Numerical results are presented to induce harmonic vibration of structure with controlled magnitude via adjusting the damping and to verify the controlled resonant vibration formulation.
机译:可以通过最佳选择压电致动器的轨迹,形状和大小以及选择施加到致动器的电场来实现具有分布式压电致动器的结构的形状控制。形状控制可分为静态或动态形状控制。无论是瞬时变化还是逐渐变化,静态或动态形状控制都旨在确定压电致动器的轨迹,尺寸和形状,以及所施加的电压,以便有效地获得所需的结构形状。本文主要涉及为通用智能层压复合板结构建立有限元公式,该公式能够使用非矩形元素分析静变形和动态变形。使用三阶板理论对智能复合板的机械变形进行建模,而电场则基于分层理论进行模拟。通过与可用数值结果进行比较,验证了用于静态和动力学分析的有限元公式。还进行了选定的实验来测量结构变形,并将实验结果与有限元公式的结果进行关联以进行静态分析。此外,采用线性最小二乘(LLS)方法来研究不同压电致动器贴片图案对误差函数结果的影响,该误差函数是静态结构形状控制中计算出的和所需的结构形状之间的最小平方误差。本文的第二个问题是通过找到施加的电压和压电致动器贴片的配置以最小化误差函数,来进行准静态形状控制的压电致动器设计优化(PADO),而压电致动器的配置是基于优化技术来定义的更改节点坐标(尺寸/形状优化)或消除结构网格中的无效元素(拓扑优化)。开发了几种形状控制算法,以通过减少误差函数来改善结构形状控制。基于GA的电压和压电执行器设计优化方法的进一步发展包括约束处理,其中误差函数可以根据能耗或其他方式进行优化。给出了数值示例,以验证所提出的算法适用于基于电压和压电致动器设计优化(PADO)的准静态形状控制,从而将误差函数降至最低。第三个问题是将本发明的有限元公式用于模态形状控制和智能复合板结构的共振振动控制。开发了可控的共振振动公式。还采用模态分析和LLS方法来优化施加到压电致动器的电压,以实现模态形状。纽马克直接时间积分法用于研究智能结构的谐波激励。数值结果表明,通过调节阻尼来诱导结构具有受控幅度的谐波振动,并验证了受控的共振振动公式。

著录项

  • 作者

    Nguyen Van Ky Quan;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号