首页> 外文OA文献 >Uso de DES y RANS no estacionario para la simulación del flujo alrededor de una carena Wigley - Use of Unsteady RANS and DES to simulate flows around a Wigley Hull)
【2h】

Uso de DES y RANS no estacionario para la simulación del flujo alrededor de una carena Wigley - Use of Unsteady RANS and DES to simulate flows around a Wigley Hull)

机译:使用非稳态RANS和DES模拟Wigley船体周围的流动)

摘要

Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.
机译:由于计算机流体动力学工具的准确性和可用的计算机功能,在船舶设计过程中,它已成为海军建筑师的重要工具。不幸的是,通常在粘性效应在流动中起主要作用时使用的RANSE代码的开发尚未达到成熟阶段,因为湍流模型的准确性和自由表面表示是不确定性的最重要来源。当对非恒定流进行仿真时,会增加另一个不确定性级别,因为通常在航海和机动分析以及URANS方程求解器中进行研究。当前的工作表明了在URANS方程求解器CFDSHIP-Iowa上使用新方法进行湍流建模(独立涡模拟)和自由表面表示(水平集)的适用性和收益。与URANS相比,预计DES可以预测更宽的频率内容,并且在边界层分离起主要作用的流中表现更好。水平集方法能够捕获非常复杂的自由曲面几何形状,包括破坏和倾覆波。这些改进的性能在一组相当复杂的流动中进行了测试,这些流动是由Wigley船体在纯漂移运动下产生的,漂移角范围为10至60度,并使用多个弗洛德数来研究其变化的影响。对获得的结果进行定量验证和确认,以确保其准确性。结果表明,CFDSHIP-Iowa代码具有对极端不稳定船舶操纵的复杂流进行精确时间仿真的能力。水平集方法能够捕获非常复杂的自由曲面几何形状,并且在不稳定的模拟中使用DES可以极大地改善获得的结果。定性确定了随漂移角和Fr变化的涡旋结构和不稳定性。流动模式的整体分析表明,旋涡结构与自由表面波模式之间存在很强的相关性。确定了类似卡曼的涡旋脱落,并且缩放后的St与通用St值非常吻合。确定尖端涡旋并分析相关的螺旋不稳定性。使用船体长度的St随沿涡芯(x)的距离的增加而减小,这与其他模拟的结果相似。但是,与之前的模拟中几乎恒定的常数相比,使用沿涡旋核的距离定标的St显示出强烈的振荡。这种差异可能是由于自由表面,网格分辨率以及尖端涡旋与其他涡旋结构之间的相互作用所引起的,需要进一步研究。这项研究是探索性的,因为更细的网格是可取的,并且缺少大α的实验数据,特别是对于局部流量。最近,CFDSHIP-Iowa V4的高性能计算能力已得到改进,从而可以进行大规模计算。使用三个网格分别为10M,48M和250M的点进行DTMB 5415的舱底龙骨(α=20º)的DES。使用13M网格分析了在α=30º处KVLCC2周围的流动的DES分析,并与1.6M网格上的DES结果进行了比较。两项研究均与本文关于网格分辨率的结论一致,因为剪切层,Karman状,马蹄形和螺旋形不稳定性的主频仅显示出网格细化的边际变化。使用粗网格的代价是较小的频率幅度和较差的TKE。因此,应使用更细的网格来改善V&V,以解决所有不同Fr和α的大部分活动湍流尺度,并有望与可用的大α的其他EFD数据进行比较。

著录项

  • 作者

    Pinto Heredero Antonio;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号