首页> 外文OA文献 >Experimental and numerical study of cw green laser crystallization of a-Si:H thin films
【2h】

Experimental and numerical study of cw green laser crystallization of a-Si:H thin films

机译:a-Si:H薄膜的连续绿色激光晶化实验与数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).
机译:薄膜硅的结晶和晶粒生长技术是提高太阳能电池效率和降低成本的最有前途的方法之一。与常规加热方法相比,激光结晶和退火的主要优势在于其将快速加热和冷却限制在薄表面层上的能力。激光能量用于加热非晶硅薄膜,将其熔化并在冷却时将其微观结构改变为多晶硅(poly-Si)。根据激光密度,可以在照射区域的中心达到汽化温度。在这些情况下,预计会产生烧蚀效果,并且退火过程无效。 a-Si薄膜中的加热过程由一般的热传递方程决定。使用有限元方法(FEM),特别是COMSOL Multiphysics,通过热源移动来求解二维非线性传热方程。数值模型有助于建立所需的密度和加工速度范围,以确保熔融和结晶而不会损坏或烧蚀硅表面。通过物理气相沉积获得的非晶硅样品用cw-green激光源(Newport-Spectra的Millennia Prime)辐照,该光源可提供高达15 W的平均功率。通过共聚焦激光扫描显微镜(Leica DCM3D)和扫描电子显微镜(SEM Hitachi 3000N)表征辐照区域的形态。通过显微拉曼光谱法(Renishaw,inVia Raman显微镜)研究了结构性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号