首页> 外文OA文献 >Soil Infrastructure, Interfaces Translocation Processes in Inner Space (“Soil-it-is”): Towards a Road Map for the Constraints and Crossroads of Soil Architecture and Biophysical Processes
【2h】

Soil Infrastructure, Interfaces Translocation Processes in Inner Space (“Soil-it-is”): Towards a Road Map for the Constraints and Crossroads of Soil Architecture and Biophysical Processes

机译:内部空间中的土壤基础设施,接口和迁移过程(“ Soil-it-is”):制定土壤结构和生物物理过程的约束和十字路口的路线图

摘要

Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input), moisture (matric potential), and solids composition and complexation (organic matter and clay interactions). In this paper we review and put into perspective preliminary results of the newly started research program “Soil-it-is” on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase) and pore system (water and air phases), constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions), while other soils form pipe-like structures (agriculturally poorly functioning soils), with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon of 10 kg kg-1) is found to be a promising constraint for a soil’s ability to maintain or regenerate functional structure. Next, we show the Dexter et al. (2008) threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces) as well as polycyclic aromatic hydrocarbons (water-solids interfaces). However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter) may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential) may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.
机译:土壤功能及其对健康,经济和环境的影响在宏观上很明显,但在微观上是确定的,这是基于土壤微体系结构与包括孔隙和颗粒网络在内的土壤基础设施中发生的运输和转化过程之间的相互作用以及它们的界面。土壤结构的形成及其对干扰的抵抗力是高度动态的特征,受到管理(能量输入),水分(矩阵势),固体成分和复合物(有机物与粘土相互作用)的影响。在本文中,我们回顾并展望了新近启动的功能土壤建筑研究计划“ Soil-it-is”的初步结果。为了识别和量化对土壤结构变化和复原力的生物物理约束,我们声称需要新的方法来更好地解释在散装土壤尺度上测量的过程和参数,以及它们与微观尺度上看似混乱的土壤内部空间行为的联系。第一步,我们重新审视土壤基质(固相)和孔隙系统(水和空气相),构成土壤基础设施的互补和互动网络。对于具有对比土壤管理的田间对,我们建议在不同水分条件下对测得的土壤-气体传输参数进行数据分析的新方法,以评估对土壤基质和孔隙网络形成的控制。结果表明,某些土壤形成海绵状孔隙网络(就农业和环境功能而言,多数为健康土壤),而另一些土壤则形成管状结构(农业功能较差的土壤),两者的差异与有机物和有机物的络合有关。土壤结构退化。最近提出的德克斯特等。 (2008)阈值(粘土与有机碳的比率为10 kg kg-1)被发现是土壤维持或再生功能结构能力的有希望的约束。接下来,我们展示Dexter等。 (2008年)的阈值也可能适用于水文和物理化学界面现象,包括土壤憎水性和挥发性有机蒸气(气-水-固体界面)以及多环芳烃(水-固体界面)的吸附。但是,不同管理土壤的数据表明,在决定功能土壤的结构和界面过程时,能量输入,土壤水分状态和植被(有机有机物的质量)可能与有机碳的络合和降解一起同样重要。最后,我们构想了通往土壤内部空间的路线图,在其中寻找在每个生物物理参数交叉点(例如,有机物和粘土之间的络合,水分引起的从亲水性到疏水性表面条件的变化都可以发挥作用。我们假设每个十字路口(例如,有机碳/粘土比与基质势之间)可能会控制土壤自组织在给定时间如何受到土壤利用和气候的能量和水分梯度的影响而表现出来。该路线图可以作为对功能性土壤建筑的更新和多学科关注的灵感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号