首页> 外文OA文献 >Application of the 'Full Cavitation Model' to the fundamental study of cavitation in liquid metal processing
【2h】

Application of the 'Full Cavitation Model' to the fundamental study of cavitation in liquid metal processing

机译:“全空化模型”在液态金属加工空化基础研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.
机译:熔体的超声空化处理显着改善了常规和高级金属材料的下游性能和质量。然而,由于处理大量液态金属的困难而阻碍了该技术的转移。为了增进对空化处理效率的理解,对完全空化模型进行了修改,该模型是从瑞利-普莱塞特方程的简化形式导出的,并应用于液态熔体中气泡传播的两相问题。声音传播的数值模拟在微秒级的时间范围内执行,以预测该域中的最大和最小声压振幅场。该字段应用于气泡传输方程的源项,以在与流体流动相关的时间尺度上预测空化气泡的产生和破坏。数值研究了使用挡板限制流槽导管中的流速,以确定使液体在高空化活性区域中停留时间最大化的最佳配置。利用这种构造,然后可以将液态金属的分批处理转变为连续处理。数值模拟将针对Brunel大学进行的水和铝合金实验进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号