首页> 外文OA文献 >Thermodynamic Considerations in Molten Salt Electrolysis for Rare Earth Metals
【2h】

Thermodynamic Considerations in Molten Salt Electrolysis for Rare Earth Metals

机译:稀土金属熔融盐电解中的热力学考虑

摘要

Many applications utilize rare earths as a part of their essential composition, such as: Ni-MH batteries, glass screen, magnets, fluorescent lightning, etc. These reactive elements are normally found as an oxide compound due to their affinity with oxygen. Their oxide formation exhibits a high standard free energy, which make them really stable. Consequently, extracting rare earths cannot be easily done with a simple acid-base reaction.It has been known that there are two reduction ways to extract rare earth, metallothermic reduction and molten salt electrolysis process. Metallothermic method is determined by standard free energy formation, melting point, boiling point, vapor pressure, viscosity, and density. As for molten salt electrolysis, it is not only determined with those factors, but also a decomposition potential. Molten salt or fused salt is used as an electrolyte, because it has an excellent electric conductivity, heat capacity, and can also act as a solvent.This work presents a comprehensive study on thermodynamic considerations of molten salt electrolysis for rare earth metals. Related publicationsu27 results are analyzed and summarized. It reveals that a mixture of molten salts can help reduce the melting point (at its eutectic point) and increase their electric conductivity. Furthermore, rare earth fluoride as a solvent can help increase the rare earth oxide solubility as the feed, while alkali metals exhibit a contrast result. A higher temperature also result in higher solubility. In chloride molten salt electrolysis, a stable divalent ion will be produced and result in a low current efficiency. Fluoride molten salt electrolysis has higher current efficiency than the chloride system, yet it requires more energy consumption due to a higher decomposition potential in fluoride system.E-pO2- diagram was constructed, modeled and implemented for providing essential information in the reduction process of rare earths by using STABCAL program. This work selects neodymium in a 75mole%LiF-25mole%NdF3 system to produce neodymium by molten electrolysis at 750oC. E-pO2- diagram showed the value of the decomposition potential of Nd, which is -5.08 volts calculated from Kubaschewski databases and -4.98 volts calculated from HSC databases. This is confirmed with the similar decomposition potential determined by V.A. Grebnev and V.P. Dmitrienko (2007) experiment that is 4-8 volt using similar conditions. At 5.5volts applied potential, the E-pO2- diagram also showed a tendency of Nd metal to decompose rather than Li metal (higher driving force) with an overvoltage () 0.425volts for Nd and 0.153volts for Li.
机译:许多应用将稀土作为其基本成分的一部分,例如:Ni-MH电池,玻璃屏幕,磁体,荧光灯等。这些反应性元素由于与氧的亲和力,通常被发现是氧化物。它们的氧化物形成具有高标准自由能,这使它们真正稳定。因此,通过简单的酸碱反应难以提取稀土。已知有两种还原稀土的还原方法,金属热还原法和熔融盐电解法。金属热法由标准的自由能形成,熔点,沸点,蒸气压,粘度和密度确定。对于熔融盐电解,不仅取决于这些因素,而且还取决于分解电位。熔融盐或熔融盐被用作电解质,因为它具有优异的导电性,热容量,并且还可以充当溶剂。这项工作对熔融盐电解稀土金属的热力学考虑进行了全面研究。相关出版物的结果进行了分析和总结。它表明,熔融盐的混合物可以帮助降低熔点(在其低共熔点)并增加其电导率。此外,稀土氟化物作为溶剂可以帮助提高稀土氧化物作为原料的溶解度,而碱金属则显示出对比结果。较高的温度也导致较高的溶解度。在氯化物熔融盐电解中,将产生稳定的二价离子,并导致低电流效率。氟化物熔融盐电解的电流效率高于氯化物系统,但由于氟化物系统中较高的分解电位,因此需要更多的能量消耗.E-pO2-图的构建,建模和实现为稀有还原过程中的重要信息提供了信息使用STABCAL程序接地。这项工作在75mole%LiF-25mole%NdF3系统中选择钕,以在750oC下通过熔融电解生产钕。 E-pO2-图显示了Nd的分解电位值,该值是从Kubaschewski数据库计算得出的-5.08伏特和从HSC数据库计算得出的-4.98伏特。由V.A.确定的类似分解电位可以证实这一点。格列布涅夫(Grebnev)和V.P. Dmitrienko(2007)在类似条件下的4-8伏实验。在5.5伏的施加电势下,E-pO2-图还显示出Nd金属而不是Li金属分解的趋势(更高的驱动力),其中Nd过电压()为0.425伏,Li过电压(0.1)为0.153伏。

著录项

  • 作者

    Gunawan Arwin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号