首页> 外文OA文献 >Nouvelles méthodes de calcul pour la prédiction des interactions protéine-protéine au niveau structural
【2h】

Nouvelles méthodes de calcul pour la prédiction des interactions protéine-protéine au niveau structural

机译:在结构水平上预测蛋白质相互作用的新计算方法

摘要

Molecular docking is a method that predicts orientation of one molecule with respect to another one when forming a complex. The first computational method of molecular docking was applied to find new candidates against HIV-1 protease in 1990. Since then, using of docking pipelines has become a standard practice in drug discovery. Typically, a docking protocol comprises different phases. The exhaustive sampling of the binding site upon rigid-body approximation of the docking subunits is required. Clustering algorithms are used to group similar binding candidates. Refinement methods are applied to take into account flexibility of the molecular complex and to eliminate possible docking artefacts. Finally, scoring algorithms are employed to select the best binding candidates. The current thesis presents novel algorithms of docking protocols that facilitate structure prediction of protein complexes, which belong to one of the most important target classes in the structure-based drug design. First, DockTrina - a new algorithm to predict conformations of triangular protein trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) is presented. The method takes as input pair-wise contact predictions from a rigid-body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation (RMSD) test. Being fast and efficient, DockTrina outperforms state-of-the-art computational methods dedicated to predict structure of protein oligomers on the collected benchmark of protein trimers. Second, RigidRMSD - a C++ library that in constant time computes RMSDs between molecular poses corresponding to rigid-body transformations is presented. The library is practically useful for clustering docking poses, resulting in ten times speed up compared to standard RMSD-based clustering algorithms. Third, KSENIA - a novel knowledge-based scoring function for protein-protein interactions is developed. The problem of scoring function reconstruction is formulated and solved as a convex optimization problem. As a result, KSENIA is a smooth function and, thus, is suitable for the gradient-base refinement of molecular structures. Remarkably, it is shown that native interfaces of protein complexes provide sufficient information to reconstruct a well-discriminative scoring function. Fourth, CARBON - a new algorithm for the rigid-body refinement of docking candidates is proposed. The rigid-body optimization problem is viewed as the calculation of quasi-static trajectories of rigid bodies influenced by the energy function. To circumvent the typical problem of incorrect stepsizes for rotation and translation movements of molecular complexes, the concept of controlled advancement is introduced. CARBON works well both in combination with a classical force-field and a knowledge-based scoring function. CARBON is also suitable for refinement of molecular complexes with moderate and large steric clashes between its subunits. Finally, a novel method to evaluate prediction capability of scoring functions is introduced. It allows to rigorously assess the performance of the scoring function of interest on benchmarks of molecular complexes. The method manipulates with the score distributions rather than with scores of particular conformations, which makes it advantageous compared to the standard hit-rate criteria. The methods described in the thesis are tested and validated on various protein-protein benchmarks. The implemented algorithms are successfully used in the CAPRI contest for structure prediction of protein-protein complexes. The developed methodology can be easily adapted to the recognition of other types of molecular interactions, involving ligands, polysaccharides, RNAs, etc. The C++ versions of the presented algorithms will be made available as SAMSON Elements for the SAMSON software platform at http://www.samson-connect.net or at http://nano-d.inrialpes.fr/software.
机译:分子对接是一种预测形成复合物时一个分子相对于另一个分子的取向的方法。 1990年,第一种分子对接计算方法被用于寻找抗HIV-1蛋白酶的新候选物。从那时起,对接管线的使用已成为药物发现中的标准做法。通常,对接协议包括不同的阶段。需要对接亚基的刚体近似后,对结合位点进行详尽的采样。聚类算法用于对相似的绑定候选进行分组。应用精制方法时要考虑到分子复合物的柔韧性并消除可能的对接伪像。最后,采用评分算法来选择最佳结合候选者。本论文提出了对接规程的新算法,该规程有助于蛋白质复合物的结构预测,属于基于结构的药物设计中最重要的靶标类别之一。首先,介绍了DockTrina-一种预测三角形蛋白质三聚体(即所有三对蛋白质之间具有成对接触的三聚体)构象的新算法。该方法将刚体对接程序中的成对接触预测作为输入。然后使用非常快速的均方根偏差(RMSD)测试对单体对的所有可能组合进行扫描和评分。 DockTrina快速高效,其性能优于专门用来根据收集的蛋白质三聚体预测蛋白质寡聚体结构的最新计算方法。其次,提出了RigidRMSD-一个C ++库,该库可以在恒定时间内计算与刚体转换相对应的分子姿势之间的RMSD。该库对群集对接姿势非常实用,与基于标准RMSD的群集算法相比,速度提高了十倍。第三,KSENIA-开发了一种基于知识的新颖的蛋白质-蛋白质相互作用评分功能。计分函数重构问题被公式化并解决为凸优化问题。结果,KSENIA是一个平滑函数,因此适用于分子结构的基于梯度的细化。值得注意的是,已表明蛋白质复合物的天然界面提供了足够的信息来重构良好区分的评分功能。第四,提出了CARBON-对接候选刚体进行细化的新算法。刚体优化问题被视为计算受能量函数影响的刚体的准静态轨迹。为了解决分子复合物旋转和平移运动步长不正确的典型问题,引入了可控进展的概念。结合经典的力场和基于知识的评分功能,CARBON的效果很好。 CARBON还适合精制分子复合物,在其亚基之间具有中等和较大的空间碰撞。最后,介绍了一种评估评分函数预测能力的新方法。它允许在分子复合物的基准上严格评估目标评分功能的性能。该方法使用分数分布而不是特定构象的分数进行操作,这使其与标准命中率标准相比具有优势。本文中描述的方法在各种蛋白质-蛋白质基准上进行了测试和验证。实施的算法已成功用于CAPRI竞赛中,用于蛋白质-蛋白质复合物的结构预测。所开发的方法可以很容易地适应于识别其他类型的分子相互作用,包括配体,多糖,RNA等。所提供算法的C ++版本将作为SAMSON元素提供给SAMSON软件平台,网址为http://。 www.samson-connect.net或http://nano-d.inrialpes.fr/software。

著录项

  • 作者

    Popov Petr;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号